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Abstract

Recently, we have introduced a new algorithm for automated negotiation, called
MiCRO, which, despite its simplicity, outperforms many state-of-the-art negoti-
ation strategies [1]. Furthermore, we claimed that under certain conditions which
typically hold in the Automated Negotiating Agents Competition (ANAC), it is
a game-theoretically optimal strategy. The goal of this paper is to formally prove
those claims. Specifically, we define ‘negotiation’ as an extensive-form game and
define the class of consistent strategies for this game, which consists of those
strategies that satisfy a number of rationality criteria. We then prove that under
the above mentioned conditions MiCRO is a best response against itself among
all consistent negotiation strategies. Furthermore, we define the notion of a bal-
anced negotiation domain, which is a domain in which two MiCRO agents would
always come to an optimal agreement. Finally, we show that many of the domains
used in ANAC indeed happen to be (approximately) balanced. The importance
of this work is that if we know under which conditions MiCRO is theoretically
optimal, then we can use this to test to what extent other negotiation algorithms
are able to achieve similar results to MiCRO when applied under those same con-
ditions. Furthermore, it would help researchers to design more challenging test
cases for automated negotiation in which MiCRO is not optimal.

Keywords: Automated Negotiation, Multi-Agent Systems, The Bargaining Problem,
Game Theory

1 Introduction

As the use of intelligent agents is becoming increasingly widespread, and those agents
are becoming increasingly autonomous, it is to be expected that in the near future it
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will be common for multiple such agents to be deployed to work together, while repre-
senting different stakeholders with different objectives. This would require negotiation
between such agents and we therefore expect that automated negotiation will become
a more and more prevalent technology in our daily lives.

The field of automated negotiation deals with systems of autonomous agents that
each have different objectives, but that need to cooperate to ensure beneficial out-
comes. When presented with a problem, such agents propose potential solutions to
one another, in the hope to find one that is acceptable to everyone. This means that,
even though the agents are purely self-interested, they each still need to make sure
that their proposals are also sufficiently beneficial to the other agents, otherwise none
of those proposals would ever get accepted [2]. A simple example is the scenario of a
buyer and a seller that are negotiating the price of a car. While the seller prefers to
sell the car for the highest possible price, she has to keep in mind that the price must
still be low enough for the buyer to accept the offer.

The main question in automated negotiation is how to make this trade-off, and
is commonly known as the bargaining problem. In the case that the agents’ utility
functions are common knowledge, this problem has been solved theoretically [3–5].
However, the question how to solve it in the case that the agents do not know each
others’ utility functions is a long-standing open problem [6]. While we do not claim
to have solved it in general, we do argue in this paper that our recently introduced
algorithm called MiCRO [1] solves it under a number of specific conditions.

In the literature, many different negotiation strategies have been proposed that
aimed to tackle the bargaining problem heuristically. Most of them start by making
very selfish proposals and, as time passes, concede by making proposals that yield more
and more utility to the opponent. While the agents are not given any knowledge about
their opponents’ utility functions, they typically try to infer this information at run-
time, from the proposals they receive from their opponents. This is known as opponent
modeling. To test such strategies, the annual Automated Negotiating Agent Competi-
tion (ANAC) has been organized since 2010. Most agents that were successful in this
competition used various different machine learning techniques for opponent model-
ing. However, we have recently shown that many of the ANAC negotiation scenarios
can in fact be tackled just as well without opponent modeling [1]. To demonstrate this,
we presented a new negotiation strategy, called MiCRO, which does not employ any
kind of opponent modeling or machine learning at all, and yet outperformed many
of the strongest participants of ANAC. Furthermore, we claimed that, under certain
conditions, it is game-theoretically optimal.

The main goal of this paper is to formally prove our claim that MiCRO is game-
theoretically optimal on many of the ANAC domains. Specifically, we prove this in
four steps:
1. We define the notion of a consistent negotiation strategy, which is a negotiation

strategy that satisfies a number of rationality conditions, and prove that MiCRO
is consistent (Section 5).

2. We define the notion of the balance set, which is the set of possible agreements
that two MiCRO agents could make with each other (Section 6).
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3. We then formally prove that (under a number of mild assumptions that typi-
cally hold in ANAC) MiCRO is a best response against itself among all possible
consistent negotiation strategies (Section 7).

4. We define the notion of a balanced negotiation domain as a domain where the
balance set is a subset of the set of optimal agreements (meaning that two MiCRO
agents would make optimal agreements in such a domain) and we show that most
of the domains used in ANAC are indeed (approximately) balanced (Section 8.2).

In addition, we also make the following contributions:
� We investigate why so many ANAC domains are balanced, and show that this is
related to a certain kind of symmetry in those domains (Section 8.3).

� We propose a number of improvements to MiCRO that help defend it against
inconsistent opponents (Section 9).

� We identify a number of research questions about opponent modeling that may
be answered with the help of MiCRO (Section 10).

We feel, however, that we should stress the following.
Remark 1. MiCRO is not intended to be used as a real-world negotiation algorithm.
It is purely intended as a theoretical device that allows us to analyze the complexity
of negotiation domains, and as a benchmark algorithm that allows us to assess the
strength of other negotiation algorithms.

We argue that our work is important for the following reasons:
1. The nice theoretical properties of MiCRO in combination with its simplicity make

it an ideal benchmark strategy. After all, it does not make much sense to use a
highly sophisticated machine learning algorithm if it does not even outperform a
much simpler strategy like MiCRO.

2. The fact that we have identified a set of conditions under which MiCRO is the-
oretically optimal is useful because it allows us to test for any other negotiation
strategy to what extent it is able to achieve similar results under those conditions.
In other words, it provides us with an objective ‘optimality test’ for future nego-
tiation algorithms. In Section 10 we will present a number of concrete research
questions that one may ask for any new negotiation algorithm, and that may be
answered thanks to our work.

3. Knowing under which conditions MiCRO is optimal will be useful for researchers
to design more challenging negotiation test cases for which there is no known
optimal algorithm.

Finally, we should remark that our original paper [1] contained a number of small
errors, so some of the claims we made in that paper were not formulated correctly.1

In this paper we fix those errors. Specifically, we have made a small change in the
definition of an ‘inconsistent proposal’, and we have made a small change to the
definition of MiCRO itself.

The source code of MiCRO, as well as our code to calculate the balance set and
the balance values of a given domain, have been made publicly available at:
https://www.iiia.csic.es/∼davedejonge/downloads

1We thank an anonymous reviewer for pointing this out.
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2 Related Work

The first edition of ANAC was held in 2010, and has since then served as the reference
for most research on automated negotiation. The negotiation domains that are used
in most editions of this competition still form the most commonly used benchmark
data set in the field of automated negotiation.

The first three editions of ANAC focused on basic bilateral negotiations with linear
utility functions [7], and in 2013 the option was added for agents to learn from previous
negotiation sessions [8]. In 2014 the focus shifted to very large domains with non-linear
utility functions [9]. However, from 2015 onward the competition went back to smaller
domains and linear utility, but focused on multilateral negotiations [10]. In 2019 and
2020 the focus shifted back to bilateral negotiations, but this time the agents only
had partial knowledge about their own utility functions [11]. Since 2021 the agents’
preferences have again been represented by ordinary linear utility functions, and, like
in 2013, the option to learn from previous negotiation sessions was re-introduced.
Furthermore, since 2017 ANAC has been extended with a number of separate leagues
focused on more specific challenges, such as the game of Diplomacy [12], supply chain
environments [11], the game of Werewolves [11], and negotiations between agents and
humans [13].

Despite the increased attention to more complex scenarios, most work on auto-
mated negotiation still seems to be focused on small bilateral scenarios with linear
utility functions. For example, the main leagues of ANAC 2019–2023 were all exclu-
sively based on such scenarios. Furthermore, the domains of ANAC 2012–2013 are still
widely considered to be the default benchmark for automated negotiation, and have
been used in many recent high-level publications. For example, Sengupta et al. [14]
used the ANAC 2013 domains to test their work, while Mirzayi et al. [15] used a small
selection of domains from both ANAC 2012–2013, and Bakker et al. [16] used similar
linear ANAC-style domains.

Even for the basic settings of ANAC 2010–2013, a plethora of different opponent
modeling techniques have been applied by the participants. For example, to predict
the opponent’s concession strategy, Agent K [17], the winner of ANAC 2010, used an
extrapolation algorithm based on the average and standard deviation of the utility the
opponent has offered so far. Other participants applied more sophisticated machine
learning techniques, such as non-linear regression (IAMhaggler [18]), Gaussian pro-
cesses (IAMHaggler2011 [19]) or wavelet decomposition and cubic smoothing splines
(OMAC [20]). To learn the opponent’s utility function, a commonly used technique
is Bayesian learning, which was first proposed for automated negotiation in [21] and
later applied by many participants of ANAC, such as FSEGA [22], IAMhaggler [18],
and Nice Tit-For-Tat [23]. Several other agents used reinforcement learning for this
goal, such as HardHeaded [24] and ValueModelAgent [25]. A large survey of opponent
modeling techniques for negotiation can be found in [26].

While the above mentioned agents all rely on heuristic methods, there is also a large
body of work on theoretically optimal solutions for automated negotiation. However,
these solutions typically cannot be applied to the ANAC competitions, because they
are based on certain assumptions that do not hold in ANAC. Especially the assump-
tion that both agents’ know each others’ utility functions has been studied extensively.
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The most well-known example is the Nash bargaining solution [3]. Nash proved that if
both negotiators have full knowledge of each others’ utility functions, and the agree-
ment space forms a convex set, then (under a number of additional assumptions) the
outcome of the negotiation would be the agreement that maximizes the product of
the agents’ utilities. Rubinstein later showed that if the negotiation takes place over
discrete rounds and the utility functions are time-discounted then the optimal strat-
egy indeed leads to Nash’s solution [4]. Much more recently, however, we showed that
if the agreement space is discrete, rather than convex, and we assume that the nego-
tiating agent will adopt each ‘side’ of the negotiation (e.g. ‘buyer’ and ‘seller’) equally
often, then the optimal agreement is in fact the one that maximizes the sum of the
utility functions, rather than the product [5].

Much less is known about optimal negotiation strategies for the case that the
opponent’s utility is unknown, although several optimal strategies for this scenario
have been proposed as well [27, 28]. However, they do need to assume their agent has
an accurate model of the probability that the opponent will accept any given proposal,
and it remains unclear to what extent such models can realistically be obtained, even in
a controlled environment such as ANAC. Furthermore, they only prove their algorithm
is a best response against a specific type of opponent, but it remains unclear whether
it is also a best response against itself, and therefore whether or not it can form a
Nash equilibrium. Later, some improvements to these strategies were proposed in [29],
but they do not resolve the above mentioned limitations. An optimal strategy for the
acceptance of proposals was presented in [30], but their proof of optimality depends
on the assumption that the agent cannot make any proposals itself.

To the best of our knowledge, MiCRO is the only known strategy that has provably
optimal properties under the conditions of ANAC.

3 Definitions

In this section we introduce the formal definitions and notation that are required to
understand the rest of this paper. Please note that we are not claiming that anything
presented in this section is novel.

3.1 Negotiation Domains

In a classical scenario for automated negotiation, two agents α1 and α2 are bargaining
to agree on the details of a contract. The agents have a fixed amount of time to make
proposals to one another, according to some given negotiation protocol. That is, each
agent may propose an offer ω, from some given set of possible offers Ω, to the other
agent which may then either accept the proposal or reject it and make a counter
proposal ω′ ∈ Ω. The agents continue making proposals to each other until either the
deadline has passed, or one of the agents accepts a proposal made by the other. Each
agent αi has a private utility function ui that assigns to each offer ω ∈ Ω a utility value
ui(ω) ∈ R, but which is not known to the other agent. When an offer ω gets accepted
the agents receive their respective utility values u1(ω) and u2(ω) corresponding to
this offer. On the other hand, if the negotiations fail because no proposal is accepted
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before the deadline, then each agent αi receives a fixed utility value rvi ∈ R, which is
known as its reservation value.
Definition 1. A bilateral negotiation domain D is a tuple ⟨Ω, u1, u2, rv1, rv2⟩
where:

� Ω is a finite set known as the offer space, representing the possible offers the
agents can propose to one another.

� u1 and u2 are two utility functions ui : Ω → R (one for each agent) which
assign to each offer ω ∈ Ω a utility value ui(ω) ∈ R.

� rv1, rv2 ∈ R are the reservation values of the respective agents.
In the example of a buyer and a seller that bargain over the price of a car, the set

of possible offers Ω would be the set of prices that one can reasonably expect them to
offer or ask.

In the literature many different kinds of negotiation domains have been studied.
For example, one can distinguish between so-called ‘single-issue’ domains, ‘multi-issue’
domains, or ‘strategic’ domains [31]. Furthermore, one can distinguish between linear
utility functions and non-linear utility functions. However, in this work these distinc-
tions are not relevant. Our work applies to any of these types of domains, as long as
the offer space is not too large and for any given offer ω the agent can calculate its
own utility value ui(ω) efficiently.
Remark 2. In this paper we do not make any assumptions about the type of util-
ity functions (linear or non-linear), and we do not make any assumptions about the
structure of the offer space (single-issue or multi-issue), other than that it is a finite
set.

Furthermore, it is sometimes assumed in the literature that the utility obtained by
the agents also depends on time. That is, when the agents agree on some offer ω, the
utility received by the agents is given by δt ·ui(ω) where δ is a real number between 0
and 1, called the discount factor and where t is the time at which they make the deal.
This means that the later the deal is made, the less utility they receive. In this paper
we do not take into account such discount factors. However, we will briefly argue in
Section 8.4 that this does not matter much because the presence of discount factors
only yields even more benefit to MiCRO.

3.2 Negotiation as an Extensive-Form Game

In this section we will formally define automated negotiation as an extensive-form
game. To this end we will define the actions of this game (Def. 2), the states of this
game (Def. 3), for each state, the set of actions that are legal in that state (Def. 4), and
the state-transition function that determines how the actions of the players change
the state of the game (Def. 6). One should keep in mind, however, that in this game
the players do not know each other’s utility functions.

We will always silently assume there is a fixed set of offers Ω.
Definition 2. We define a negotiation action to be a tuple

(i, η, ω, t) ∈ {1, 2} × {p, a} × Ω× R
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where i represents the index of the agent performing the action, and η represents the
type of the action, which can be either ‘proposal’, represented by the symbol p, or
‘acceptance’, represented by the symbol a. Furthermore, ω is the offer that is being
proposed or accepted, and t is the time at which the agent proposes or accepts the offer.

So, the notation (1, p, ω, t) means that agent α1 proposes offer ω at time t, and the
notation (2, a, ω, t) means that agent α2 accepts offer ω at time t.

We use A to denote the set of all possible negotiation actions. Furthermore, we
use A1 to denote the set of all negotiation actions with i = 1, and A2 for the set of
all negotiation actions with i = 2. That is:

A1 := {1} × {p, a} × Ω× R
A2 := {2} × {p, a} × Ω× R
A := A1 ∪ A2

If a = (i, η, ω, t) and a′ = (i′, η′, ω′, t′) are two negotiation actions with t < t′, then
we say that a comes before a′, or that a′ comes after a. We may denote this as
a ◁ a′.

(i, η, ω, t) ◁ (i′, η′, ω′, t′)
def←→ t < t′

Definition 3. We define a negotiation state s to be a sequence of negotiation
actions:

s = (a1, a2, . . . , ak)

sorted in chronological order (i.e. aj ◁ aj+1 for all j ∈ {1, 2, . . . , k − 1}). The integer
k can be any arbitrary non-negative integer, including zero. The set of all possible
negotiation states is denoted as S.

We may write (with slight abuse of notation) a ∈ s to indicate that a is an element
of the sequence s, and a ̸∈ s to indicate it is not in the sequence. Furthermore,
whenever the letter i is used as the index of an agent αi, we may use the notation
3 − i to refer to the index of the opponent. After all, if i = 1 then 3 − i = 2, and if
i = 2 then 3− i = 1. So, α3−i is indeed the opponent of αi.

A negotiation protocol Π specifies, for any state s whether the negotiations
have finished or not and which agreements have been made, and for any state s
and agent αi which offers that agent may propose or accept. That is, it is a pair of
maps Π = (Πstat,Πac) where Πstat represents the status of the negotiations and Πac

represents the agents’ legal actions.
Specifically, Πstat : S → Ω ∪ {o, f}, where o and f are two abstract symbols, with

the following meaning:
� Πstat(s) = o means that in state s the negotiations are ongoing.
� Πstat(s) = fmeans that in state s the negotiations have failed, i.e. finished without
agreement.

� Πstat(s) = ω ∈ Ω, means that in state s the negotiations have finished with
agreement ω.

Furthermore, Πac : S × {1, 2} → 2A determines the legal actions for the agents. That
is for any state s and any agent αi, the legal actions for that agent in that state are
given by Πac(s, i).
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Arguably the most commonly used negotiation protocol in the literature is the
alternating offers protocol (AOP) [32]. In the AOP, the agents take turns alternately.
In each turn, the agent whose turn it is may propose any offer ω from the offer space
Ω, or may accept the previous offer proposed by the opponent. Negotiations finish
either when the deadline passes, or as soon as one of the agents accepts a proposal.
This protocol has three parameters: the offer space Ω, the deadline T ∈ R, and the
index i ∈ {1, 2} of the agent that is the first to make a proposal.
Definition 4. Let Ω be some set of offers, let s = (a1, a2, . . . , ak) be any negotiation
state of length k, and, in case k ̸= 0, let ak = (ik, ηk, ωk, tk). Then, the alternating
offers protocol with deadline T ∈ R and initial agent i ∈ {1, 2}, is defined as follows:

If k = 0, then: Πstat = o

Πac(s, i) = {i} × {p} × Ω× (0,∞)

Πac(s, 3− i) = ∅

else, if tk > T, then: Πstat(s) = f

Πac(s, 1) = Πac(s, 2) = ∅

else, if ηk = a, then: Πstat(s) = ωk

Πac(s, 1) = Πac(s, 2) = ∅

else: Πstat = o

Πac(s, k̂) =
(
{k̂} × {p} × Ω× (tk,∞)

)
∪(

{k̂} × {a} × {ωk} × (tk,∞)
)

Πac(s, 3− k̂) = ∅

where:

k̂ :=

{
1 if k + i is odd

2 if k + i is even

The first line says that in the initial state, agent αi can propose any offer from
Ω. The second line says that once any action has been made after the deadline, the
negotiations finish with failure. The third line says that if an agent accepts a proposal
before the deadline, then the negotiations finish, with the accepted proposal as the
outcome. The fourth line says that, in all other cases, the next agent αk̂ may propose
any offer from the set Ω, or may accept the previous proposal.

Strictly speaking, this definition says that, unless a proposal is accepted before the
deadline, the negotiations will only have finished once either of the agents has taken an
action after the deadline. However, since any action taken after the deadline does not
have any influence on the outcome anyway (since we will always have Πstat(s) = f), we
can in practice consider the negotiations to be finished immediately after the deadline
has passed. The only reason we formally require some agent to take an action after
the deadline, is to simplify the formalization.
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In the literature, it is typically also assumed that agents are allowed to end the
negotiations without agreement before the deadline. In the above formalization this
is also possible, by choosing an action (k̂, η, ω, t) with t > T , which means the agent
chooses to wait until the deadline has passed before making its next action.
Definition 5. Let Π be the alternating offers protocol. Then, a negotiation strategy
σ for agent αi is a partial function σ : S → Ai, such that:

� if Πac(s, i) ̸= ∅ then σ(s) ∈ Πac(s, i)
� if Πac(s, i) = ∅ then σ(s) is undefined.
In other words, the map σ is only defined for those states s in which it is αi’s

‘turn’, according to the AOP.
If σ(s) = (i, p, ω, t) it means that if the negotiation is in state s then the agent

applying strategy σ waits until time t and then proposes offer ω. Similarly, if σ(s) =
(i, a, ω, t) it means the agent waits until time t and then accepts offer ω. The condition
σ(s) ∈ Πac(s, i) simply means that the strategy only selects actions that the protocol
allows it to select.

For any extensive-form game, its transition function τ defines, for a given state s
and a given action a the next state τ(s, a). We will now define the transition function
for our model of negotiation.
Definition 6. The transition function τ is a map S ×A → S, defined as follows.
Let s = (a1, a2, . . . , ak) be a negotiation state, and let a = (i, η, ω, t) be a negotiation
action, then the next state s′ = τ(s, a) ∈ S is defined as:

τ(s, a) := (a1, a2, . . . , ak, ak+1)

where ak+1 = (i, η, ω, t+ϵk+1) and where ϵk+1 is a strictly positive real number, drawn
randomly from some probability distribution.

In other words, whenever an agent performs an action a, it will cause the original
state s to be concatenated with a new action ak+1. However, it is important to note
that this action is not exactly the action a performed by the agent. Instead, if the
agent performs action (i, η, ω, t), then the state is updated with action (i, η, ω, t+ϵk+1).
This represents the fact that when the agent sends a propose- or accept- message
at time t, it will take a small amount of time ϵk+1 for that message to arrive, due
to network latency. Since in general we do not know exactly how much time this
takes, we model ϵk+1 as a random variable. The probability distribution function of
this random variable is not relevant for this paper. Note that this makes negotiation
an non-deterministic extensive-form game. To be precise, we may assume that both
agents are connected to a ‘negotiation manager’ over a network. Each time an agent
sends a proposal or acceptance, this message has to go to the negotiation manager,
and the state of the negotiation is determined by the time at which the negotiation
manager receives the message.
Definition 7. Let Π be the alternating offers protocol, and D be a negotiation domain,
then the extensive-form game ΓD is defined as follows:

� The players are the two negotiating agents α1 and α2.
� The players’ sets of possible actions are given by A1 and A2 as in Def. 2.
� The set of states of the game are given by S as in Def. 3.
� The initial state of the game is the empty sequence () ∈ S.
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� For any given state s and agent αi, the set of legal actions are given by Πac(s, i)
as in Def. 4.

� The state transition function is defined as τ in Def. 6.
� The set of terminal states is defined as the set of all states s for which Πstat(s) ̸= o
� The players’ utility functions Ui over the terminal states are given by:

Ui(s) =

{
ui(ω) if Πstat(s) = ω ∈ Ω

rvi if Πstat(s) = f

where ui and rvi are the utility function and reservation value of the negotiation
domain for each agent αi.

Problem 1. (The Bargaining Problem) Let D be any negotiation domain and
ΓD the corresponding extensive-form game as defined in Def. 7. What is the optimal
strategy for the game ΓD?

3.3 More Notation

We will now introduce some more notation that we will use to state and prove our
lemmas and theorems.

Recall that, if a = (i, η, ω, t) and a′ = (i′, η′, ω′, t′), then a ◁ a′ means that t < t′.
Similarly, we may use the notation a ◁ t′ to denote that the time t at which action a
takes place is before t′, or t ◁ a′ to denote that action a′ takes place after time t.

For any state s = (a1, a2, . . . , ak) we use s<t to refer to the subsequence of s
consisting of all actions a ∈ s that take place before t and we use s>t to denote the
subsequence consisting of all actions a ∈ s that take place after t. For example, if we
have:

s = ((1, p, ω, 0.1), (2, p, ω′, 0.3), (1, p, ω′′, 0.5), (2, p, ω′′′, 0.7), (1, a, ω′′′, 0.9))

then:

s<0.6 = ((1, p, ω, 0.1), (2, p, ω′, 0.3), (1, p, ω′′, 0.5))

s>0.6 = ((2, p, ω′′′, 0.7), (1, a, ω′′′, 0.9)).

Formally, if s = (a1, a2, . . . , ak), then:

s<t :=


() if t ◁ a1

(a1, a2, . . . , aj) if aj ◁ t ∧ t ◁ aj+1

s if ak ◁ t

s>t :=


() if ak ◁ t

(aj+1, aj+2, . . . , ak) if aj ◁ t ∧ t ◁ aj+1

s if t ◁ a1
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Definition 8. Let s = (a1, a2, . . . , ak) be any state. Then we say that an action a is a
reply to another action a′, denoted a = replys(a

′), if a follows directly after a′. That
is, for any j ∈ {1, 2, . . . , k − 1}:

replys(aj) := aj+1

Definition 9. Let s be any given state. Assuming negotiations follow the AOP, we
say that αi rejects an offer ω at time t, denoted rejs(i, ω, t), if its opponent α3−i has
proposed ω and αi replies to it with a new proposal, rather than accepting it.

That is, the predicate rejs(i, ω, t) holds iff there exist ω′ ∈ Ω and t′ ∈ R such that
the following two conditions are both satisfied:

� (3− i, p, ω, t′) ∈ s<t

� replys((3− i, p, ω, t′)) = (i, p, ω′, t)

3.4 The MiCRO Strategy

We now recall the MiCRO negotiation strategy, which we introduced in [1]. See
Algorithm 1 for its implementation in pseudo-code.

Simply stated, MiCRO works as follows: whenever the opponent proposes a new
offer, MiCRO also replies with a new offer. This offer is always the agent’s offer with
highest utility for itself that the agent has not yet proposed before. On the other hand,
when the opponent repeats an offer it has already proposed before, then MiCRO also
replies with an offer it has already proposed before.

More formally, let α1 denote an agent that applies the MiCRO strategy, and α2 its
opponent (which may be applying any arbitrary strategy), and let K := |Ω| denote
the size of the domain. Before the negotiations begin, our agent α1 creates a list
(ω1, ω2, . . . , ωK) containing all offers in the domain, sorted in order of decreasing utility
for itself. That is, u1(ω1) ≥ u1(ω2) ≥ · · · ≥ u1(ωK). Then, whenever it is α1’s turn to
make a proposal, it counts how many different offers it has so far received from the
opponent (we denote this number by n), and how many different offers it has so far
proposed to the opponent (we denote this number by m)2. If m ≤ n then MiCRO will
propose ωm+1. On the other hand, if m > n then it picks a random integer r such
that 1 ≤ r ≤ m and proposes ωr. Of course, it should never propose any offer that is
below its reservation value, so in case u1(ωm+1) < rv1, it also just repeats a random
previous proposal, even if m ≤ n (see Algorithm 1, lines 9–12 and 23).

The intuition behind MiCRO, is that it is a kind of Tit-for-Tat strategy [23] that
does not use any knowledge about the opponent’s utility function. That is, MiCRO
tries to make the same number of concessions as the opponent, but it does not care
how large the opponent’s concessions are. After all, since the opponent’s utility is
unknown, the size of the opponent’s concession as perceived by MiCRO says nothing
about the size of the concession the opponent intended to make. The opponent might
make a large concession in terms of its own utility, but this may result in a very small
concession measured in our agent’s utility. For the same reason MiCRO never makes
large concessions to its opponent. In fact, it always makes exactly the smallest possible

2Note that if the agents follow the AOP and one of them applies the MiCRO strategy, then we always
have |m − n| ≤ 1.
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concession: it just proposes the next offer from its list. Another difference between
MiCRO and classic TFT is that MiCRO uses a different definition of ‘concession’.
That is, even if the opponent’s new proposal offers less utility to MiCRO than the
opponent’s previous proposal, MiCRO still considers this a concession, as long as it is
different from any of the opponent’s previous offers. After all, if the opponent makes
offers in order of decreasing utility for itself, then every proposal is indeed a concession
from his point of view.

For the rest of this paper we will assume a small adaptation to the original definition
of MiCRO. That is, suppose, as above that m ≤ n. Then, instead of directly proposing
ωm+1, it will first do the following:
1. If ωm+1 was already proposed earlier by the opponent, then propose (or accept)

ωm+1.
2. Otherwise, check if there exists any other offer ω such that u1(ω) = u1(ωm+1)

and such that ω has already been proposed by the opponent, but not yet by our
agent. If that is the case, then swap ω and ωm+1 on the list. Then, propose (or
accept) ω.

This is also displayed in Algorithm 1, lines 13–22. Note that, since the two offers that
are swapped have the same utility, the list still remains sorted in order of decreasing
utility.

While MiCRO can be combined with various acceptance conditions, in this paper
we will always assume it accepts a received offer if and only if it is better than or equal
to the lowest offer it is, at that time, willing to propose. More precisely, if agent α1

applies MiCRO and we define:

ωlow :=

{
ωm+1 if m ≤ n

ωm if m > n
(1)

(with m and n defined as before) then a received offer ω is accepted by α1 iff u1(ω) ≥
max{u1(ωlow), rv1} . See also Algorithm 1, lines 1–8.

One might think that MiCRO is very slow, because it makes concessions of minimal
size. However, in practice it turns out that the opposite is true: it is very fast because
it does not have to update any opponent models. Furthermore, the time it takes to sort
all the offers in the offer space turned out to be negligible in our experiments in [1].

4 Experimental Results

The focus of this paper is purely on the theoretical properties of MiCRO because the
experimental evidence of the strength of MiCRO has already been presented in other
work. Nevertheless, we think it is useful to here briefly summarize the experimental
results of MiCRO.

In our paper that introduced MiCRO [1], we presented several experiments in
which MiCRO competed against top agents from the ANAC competitions of 2012,
2013, 2018, and 2019. It was shown that MiCRO consistently outperformed each of
those agents, both in terms of a tournament evaluation and in terms of an empirical
game-theoretical evaluation.
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Algorithm 1 Describes how MiCRO decides which offer to propose or accept (note
that here offers[m] corresponds to ωm+1 in the text).

Input:
offers ▷ A sorted list containing all possible offers.
receivedOffers ▷ The set of all offers so far proposed by the opponent.
m ▷ The number of unique offers so far proposed by us.
n ▷ The number of unique offers so far proposed by the opponent.
rv ▷ Our reservation value.
u ▷ Our utility function.
ω ▷ The last offer received from the opponent. Is null if we have not

received any proposals yet.
1: if m ≤ n then
2: ωlow ← offers[m]
3: else
4: ωlow ← offers[m− 1]
5: end if
6: if ω ̸= null and u(ω) ≥ u(ωlow) and u(ω) > rv then
7: return ACCEPT(ω)
8: end if

9: if m > n or u(offers[m]) ≤ rv then
10: r ← getRandomInteger(0,m)
11: return PROPOSE(offers[r])
12: end if

▷ We are planning to propose offers[m]. However, first see if we can find any other offer
with the same utility, but that has already been proposed to us by the opponent. If yes,
then swap the two offers on the list.

13: i← m+ 1
14: while u(offers[i]) = u(offers[m]) do
15: if offers[i] ∈ receivedOffers then
16: temp← offers[i]
17: offers[i]← offers[m]
18: offers[m]← temp
19: break
20: end if
21: i← i+ 1
22: end while

▷ Propose the offer that is (now) in position m on the list.
23: return PROPOSE(offers[m])

Furthermore, MiCRO was submitted to the ANAC 2022 competition. While it only
ended in 9th place out of 19 participants, it was later shown [33] that it was in fact the
best participant from a game-theoretical point of view. That is, it was shown to form
the best empirical Nash equilibrium among all strategies submitted. The reason that
MiCRO still ended in a relatively low position, was that MiCRO did not perform well
against lower classified agents. However, MiCRO clearly outperformed the top agents
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when looking only at direct confrontations with those top agents. This is consistent
with the notion of game-theoretical optimality, which assumes that opponents are
rational and therefore do not choose a weaker strategy.

Finally, MiCRO was submitted again to ANAC in 2023 and ended in second place,
out of 15 participants.

5 Consistent Negotiation Strategies

In this section we present the formal definition of a consistent negotiation strategy.

5.1 Motivation

Ideally, we would like to show that MiCRO is a best response against itself, among
all possible negotiation strategies, but unfortunately this is not true. As we will see
in Section 9, there are strategies that do form a better response against MiCRO, but,
as far as we can tell, such strategies always seem to require detailed knowledge of the
opponent’s utility function. Since the field of automated negotiation typically assumes
that such knowledge is not available we could dismiss such strategies, and instead
only try to show that MiCRO is a best response against itself among all strategies
that do not require such knowledge. However, it turns out that this is very difficult
to formalize. Instead, we will do something else. We will prove that MiCRO is a best
response against itself, among all possible consistent strategies, which we define below.

Our justification for focusing only on consistent strategies, is that we argue that any
rational agent would normally be consistent. The only reason to follow an inconsistent
strategy would be if you want to behave irrationally on purpose to mislead and exploit
an opponent that assumes that you are rational. We will show an example of such
an inconsistent strategy in Section 9. Furthermore, we argue that such inconsistent
strategies only work if they have precise knowledge of the opponent’s utility function
and strategy. Moreover, we will show at the end of Section 7 that the assumption that
the opponents are consistent can be weakened, and in Section 9 we will show that,
with some small adaptations to MiCRO, it can be weakened ever further.
Remark 3. We argue informally that, without detailed knowledge of the opponent’s
utility function and strategy, a rational agent would not have any reason to follow an
inconsistent strategy (except perhaps, when negotiations are very close to the deadline).

We will not attempt to prove or even formalize this claim. We simply leave it up to
the readers themselves to judge whether this is a reasonable belief or not. Of course,
the formal claims we make in this paper do not depend on this belief.

The main advantage of focusing only on consistent strategies, is that we do not
have to make any assumptions about the knowledge that agents have about each
other’s utility functions.
Remark 4. All theorems and lemmas in this paper hold regardless of whether or not
agents have knowledge about each other’s utility functions.

5.2 Definition of Consistency
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t = 1 t = 2 t = 3 t = 4 t = 5
Alice (10 , 2) (9 , 3) (6 , 4)

Bob (8 , 10) (4 , 9)

Table 1: Example of an inconsistent proposal (underlined). At t = 1 Alice makes a
proposal that would yield a utility of 10 to herself and 2 to Bob. At t = 2 Bob makes
a counter proposal that yields a utility of 8 to Alice, and 10 to Bob himself. At t = 5
Alice makes a proposal that is inconsistent, because it only gives her a utility of 6,
while earlier, at t = 2, Bob already showed willingness to make a deal that gives Alice
a utility of 8. It would make more sense for Alice to first re-propose that offer from
t = 2 before proposing any offer that only gives her 6. In other words, at t = 5, the
offer (8 , 10) has strict priority for Alice over the offer (6 , 4).

In the following, we will first define the notions of an inconsistent proposal (Def. 11),
an inconsistent acceptance (Def. 12), and an inconsistent rejection (Def. 13), and then
we define a consistent strategy (Def. 14) as one that never takes any such inconsistent
actions. Since these definitions are somewhat involved, we strongly recommend the
reader to carefully look at the examples we give before each of them, so as to convince
themselves that it would indeed be irrational to follow an inconsistent strategy.
Example 1. Suppose a buyer and a seller are negotiating the price of some item.
Initially, the seller asks a price of $100, while the buyer offers only $75. Then, at
some later time t, the seller decides to drop his price and ask $50. Clearly, this would
be silly, since the buyer has already indicated she is willing to pay $75. Obviously, any
rational seller would accept the offer of $75, rather than conceding to $50. Of course,
it may happen that at that point the buyer’s offer of $75 is no longer valid (e.g. because
the protocol does not allow to accept offers from earlier rounds), but even then the
seller should at least try to re-propose the offer of $75 first, before dropping to $50.

We say that at time t, the proposal of $75 has ‘strict priority’ for the seller over
the proposal of $50, and since the seller proposes the offer of $50 anyway, even though
there exists another offer that has strict priority over it, we say he is making an
‘inconsistent proposal’.

For a more detailed example, see Table 1.
These concepts are formalized in the following two definitions.

Definition 10. Let s be a negotiation state, let t ∈ R+ be any time, and let ω and ω′

be any two different offers. Then we say that ω′ has strict priority over ω, for agent
αi at time t, if the following three conditions all hold:
1. For agent αi, the offer ω′ is better than ω: ui(ω

′) > ui(ω)
2. Its opponent already proposed ω′ at some earlier time t′:
∃t′ : (3− i, p, ω′, t′) ∈ s<t

3. αi itself has not yet re-proposed ω′ between t′ and t:
̸ ∃t′′ ∈ [t′, t] : (i, p, ω′, t′′) ∈ s<t

Or, if the following four conditions all hold:
4. Agent αi is indifferent between ω and ω′: ui(ω

′) = ui(ω)
5. Its opponent already proposed ω′ at some earlier time t′:
∃t′ : (3− i, p, ω′, t′) ∈ s<t
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t = 1 t = 2 t = 3 t = 4 t = 5
Alice (10 , 2) (9 , 3) accept: (4 , 9)

Bob (8 , 10) (4 , 9)

Table 2: Example of an inconsistent acceptance (underlined). Alice’s acceptance at
t = 5 is inconsistent, because it only gives her a utility of 4 while at t = 2 Bob already
made a proposal that would have given her a utility of 8. So, it would be smarter for
Alice to first try to re-propose that earlier offer instead of accepting the offer from
t = 4.

6. αi itself has not yet re-proposed ω′ between t′ and t:
̸ ∃t′′ ∈ [t′, t] : (i, p, ω′, t′′) ∈ s<t

7. Its opponent has not yet proposed ω before time t:
̸ ∃t′ : (3− i, p, ω, t′) ∈ s<t

(note that conditions 2 and 3 are identical to conditions 5 and 6).
In other words, for any reasonable agent αi, if the offer ω′ is better than ω, and

ω′ has already been proposed by the opponent, then αi would first try to re-propose
ω′, before proposing ω. Furthermore, if αi is indifferent between the two offers, and
ω′ has already been proposed by the opponent, while ω was not, then αi would also
first try to re-propose ω′.

We say that an agent αi makes an inconsistent proposal, if it proposes some offer
ω, while at that moment some other offer ω′ has strict priority over ω for αi.
Definition 11. Let s be a negotiation state. Then, we say that αi makes an incon-
sistent proposal iff there exist ω, ω′ ∈ Ω and t ∈ R such that the following two
conditions both hold:

� (i, p, ω, t) ∈ s
� At time t offer ω′ has strict priority over ω for agent αi (see Def. 10).
Note that in [1] we used a slightly different definition of ‘inconsistent proposal’.

Specifically, we did not include Condition 7 of Def. 10. This was an error, since in that
case it could happen that ω has strict priority over ω′, while at the same time ω′ also
has strict priority over ω, which would make it impossible to be consistent. Therefore,
the definition given here should be considered the correct one.
Example 2. Suppose again that the seller initially rejects an offer of $75 from the
buyer, but this time it is the buyer that later drops her price and offers $50. If the seller
accepts this offer it would be inconsistent, because if he is willing to accept $50, then
he should have certainly accepted the offer of $75. Therefore, we say this acceptance
was an ‘inconsistent acceptance’, unless the original offer of $75 is no longer available
and the seller has already tried to re-propose that offer himself, without success.

For a more detailed example, see Table 2.
In general, an agent αi makes an inconsistent acceptance if it accepts an offer ω

after rejecting a strictly better offer ω′, unless αi itself has already re-proposed ω′.
Definition 12. For some given state s, an agent αi makes an inconsistent accep-
tance iff there exist ω, ω′ ∈ Ω and t, t′ ∈ R such that all of the following conditions
hold:

� Agent αi accepts offer ω, at time t: (i, a, ω, t) ∈ s
� Agent αi prefers ω′ over ω: ui(ω

′) > ui(ω)
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t = 1 t = 2 t = 3 t = 4 t = 5
Alice (10 , 2) (8 , 3) (10 , 5)

Bob (7 , 10) (9 , 9)

Table 3: Example of an inconsistent rejection. At t = 5 Alice does not accept Bob’s
last offer which would have given her a utility of 9, but instead she proposes a different
offer. This means Alice made an inconsistent rejection, because she has earlier already
proposed an offer with a value of 8, so she rejected an offer that was better than some
offer she already proposed herself.

� The opponent has already proposed ω′, at time t′ before time t:

(3− i, p, ω′, t′) ∈ s<t

� Between the time t′ that the opponent proposed ω′ and the time t that αi accepted
ω, agent αi did not try to re-propose ω′:

̸ ∃t′′ : t′ < t′′ < t ∧ (i, p, ω′, t′′) ∈ s

Example 3. Suppose that at some point, the seller proposes a price of $80, but then
later he rejects a better offer of $120 from the buyer. We call this is an ‘inconsistent
rejection’.

For a more detailed example, see Table 3.
In general, we say an agent αi makes an inconsistent rejection whenever it rejects

an offer ω that is better than or equal to some offer ω′ that αi itself has already
proposed earlier.
Definition 13. We say that, for some given state s, αi makes an inconsistent
rejection iff there exist ω, ω′ ∈ Ω (possibly ω = ω′), and t ∈ R such that all of the
following conditions hold:

� Agent αi rejects ω at time t (see Def. 9): rejs(i, ω, t)
� Agent αi proposed offer ω′ at some earlier time: ∃t′ : (i, p, ω′, t′) ∈ s<t

� For αi, offer ω is better than or equal to ω′: ui(ω) ≥ ui(ω
′)

Definition 14. We say an agent or a negotiation strategy is consistent if it never
makes any inconsistent proposals, inconsistent acceptances, or inconsistent rejections.

While we think it should be obvious that inconsistent proposals and acceptances do
not make sense for a rational agent, it may be less obvious for inconsistent rejections.
After all, it is possible that an agent α1 proposes some offer ω, but later, thanks to
some opponent modeling algorithm, learns that its opponent α2 may be willing to
accept certain offers that α1 prefers over ω. Therefore, α1 could change its mind and
refuse to accept ω. However, this would mean that α1 plays a rather weak strategy,
because it means that when α1 proposed ω, it made a concession that was too large,
too early.

The following theorem is proved in Appendix A.
Theorem 1. MiCRO is consistent.
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5.3 Useful Lemmas

We will now prove two lemmas that will be important in the rest of the paper.
The following lemma plays a key role in the proofs of Theorem 2 and Theorem 3.

Lemma 1. Suppose that α1 applies MiCRO and that α2 is consistent. Furthermore,
let s denote the final state of a negotiation (under the AOP) between the two agents,
and suppose there are three offers ωi, ωj, and ωk (with ωj ̸= ωk) such that the following
conditions all hold:
1. u1(ωi) > u1(ωk)
2. u2(ωi) ≥ u2(ωj)
3. At some point during the negotiations α2 has proposed ωj, i.e.: ∃t : (2, p, ωj , t) ∈ s.

Then the negotiations did not end with ωk as the accepted offer (i.e.: Πstat(s) ̸= ωk).

Proof. Suppose the contrary, i.e. that ωk is the accepted offer. Let us define tacc to be
the time at which ωk was accepted. We know that before that, α1 must have already
proposed ωi (by Condition 1 and the definition of MiCRO), and that α2 must have
already proposed ωj (by Condition 3). In other words, we know that there are two
numbers, t and t′, such that:

� (1, p, ωi, t
′) ∈ s<tacc

� (2, p, ωj , t) ∈ s<tacc

This means we can consider two separate cases, namely the case that t < t′ and the
case that t′ < t (note that t = t′ is impossible, because the AOP does not allow two
agents to make a proposal at the same time). We can alternatively denote these two
cases as (1, p, ωi, t

′) ∈ s>t and (1, p, ωi, t
′) ∈ s<t. Now, the second case can be further

split up into two subcases 2a and 2b depending on whether or not α2 has proposed
ωi before before t. Then, case 2b can be split up again into two subcases 2b1 and
2b2 , depending on whether u2(ωi) is greater than u2(ωj), or equal. And finally, case
2b2 can again split up into two smaller cases, depending on whether or not α1 has
proposed ωj before t. So, we now have five separate cases, and we will show for each
of them that there is a contradiction.

Case 1: (1, p, ωi, t
′) ∈ s>t

In this case, if α2 replies to (1, p, ωi, t
′) by accepting ωi we would have a contradic-

tion because the assumption was that the negotiations end with ωk as the accepted
offer. On the other hand, if α2 does not accept ωi, then this would be an inconsistent
rejection (since u2(ωi) ≥ u2(ωj) and α2 has already proposed ωj at time t), so again
we have a contradiction because α2 was supposed to be consistent. A third possibility
would be that α2 does not reply to (1, p, ωi, t

′) at all, because the deadline passes, but
that again would be in contradiction with the assumption that the agents agree on ωk.

Case 2a: (1, p, ωi, t
′) ∈ s<t ∧ ∃t′′ : (2, p, ωi, t

′′) ∈ s<t

In this case, note that at time t both agents have previously proposed ωi. Clearly,
if either of them accepted the offer, then we would have a contradiction with the
assumption that ωk was going to be the accepted offer. However, if neither of them
accepted it, then it means that one of them is rejecting an offer he already proposed
himself before, which is an inconsistent rejection (this is a special case of Def. 13 with
ωi = ω = ω′).

Case 2b1: (1, p, ωi, t
′) ∈ s<t ∧ ̸ ∃t′′ : (2, p, ωi, t

′′) ∈ s<t ∧ u2(ωi) > u2(ωj)
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In this case, we have that ωi has strict priority over ωj for α2 at time t, so (2, p, ωj , t)
was an inconsistent proposal.

Case 2b2a: (1, p, ωi, t
′) ∈ s<t ∧ ̸ ∃t′′ : (2, p, ωi, t

′′) ∈ s<t ∧ u2(ωi) =
u2(ωj) ∧ ̸ ∃t′′ : (1, p, ωj , t

′′) ∈ s<t

In this case, again, we have that ωi has strict priority over ωj for α2 at time t, so
(2, p, ωj , t) was an inconsistent proposal.

Case 2b2b: (1, p, ωi, t
′) ∈ s<t ∧ ̸ ∃t′′ : (2, p, ωi, t

′′) ∈ s<t ∧ u2(ωi) =
u2(ωj) ∧ ∃t′′ : (1, p, ωj , t

′′) ∈ s<t

In this case, α1 itself has already proposed ωj before α2 proposed it at time t. This
means that α1 would then reply to α2’s proposal by accepting ωj (by definition of
MiCRO). However, since we have assumed that the negotiations end with agreement
ωk, and that ωj ̸= ωk, we again have a contradiction.

The next lemma is a small variation of Lemma 1, and will be useful in our proof
of Proposition 1. Compared to Lemma 1 we drop the assumption that ωj ̸= ωk, but
at the expense of the stronger condition u2(ωi) > u2(ωj).
Lemma 2. Suppose that α1 applies MiCRO and that α2 is consistent. Furthermore,
let s denote the final state of a negotiation (under the AOP) between the two agents,
and suppose there are three offers ωi, ωj, and ωk (possibly with ωj = ωk) such that
the following conditions all hold:
1. u1(ωi) > u1(ωk)
2. u2(ωi) > u2(ωj)
3. At some point during the negotiations α2 has proposed ωj, i.e.:
∃t : (2, p, ωj , t) ∈ s.

then negotiations did not end with ωk as the accepted offer.

Proof. To prove this we simply refer to the proof of Lemma 1. The main difference, is
that we now have to consider that ωj and ωk could be equal. However, in the proof of
Lemma 1 the fact that they were different only played a role in Case 2b2b, and since
we are now assuming that u2(ωi) > u2(ωj), this case no longer applies.

6 The Balance Set

In this section we present the notion of the balance set. For any negotiation domain,
the balance set is a subset of its offer space Ω. Its importance, is that it is the set
of possible outcomes that two agents may agree upon if they both apply the MiCRO
strategy (which we prove at the end of this section).

We will later show (in Section 8) that in many of the ANAC domains the balance
set happens to coincide with the set of optimal agreements, which means that in such
domains two MiCRO agents would always negotiate an optimal deal.

6.1 Definition of the Balance Set

In the following, for any real number x we define Ωx
i to be the set of all offers for

which ui(ω) ≥ x.
Ωx

i := {ω ∈ Ω | ui(ω) ≥ x}
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Note that the set of offers that MiCRO is willing to propose or accept is always of the
form Ωx

i , with x decreasing every time the opponent makes a new new proposal.
Also, in the rest of this paper we will always assume that (ω1, ω2, . . . ωK) denotes a

list containing all offers in ω, sorted in order of decreasing utility for agent α1 (where
K = |Ω| is the size of the domain), and that π is the permutation of the integers 1 to
K, such that (ωπ(1), ωπ(2), . . . ωπ(K)) is a list of all offers sorted in order of decreasing
utility for agent α2. Furthermore, for any integer i between 1 and K we define:

xi := u1(ωi) and yi := u2(ωπ(i)).

Definition 15. We define the balance index b to be the smallest integer for which
Ωxb

1 ∩ Ωyb

2 ̸= ∅, and we define the balance set to be the set Ωxb
1 ∩ Ωyb

2 . Furthermore,
we define

xβ := min{u1(ω) | ω ∈ Ωxb
1 ∩ Ωyb

2 }
yβ := min{u2(ω) | ω ∈ Ωxb

1 ∩ Ωyb

2 }
The values xβ and yβ are called the balance values of α1 and α2 respectively.

These concepts are also illustrated in Figures 1 and 2. The intuitive idea is that if
α1 and α2 both apply the MiCRO strategy, then xi and yi are the minimum utility
values they are respectively willing to accept after they have both made i−1 proposals,
and Ωxi

1 and Ωyi

2 represent the sets of offers they are then respectively willing to accept.
Initially, the two agents will only be willing to accept the offers in Ωx1

1 = {ω1} and
Ωy1

2 = {ωπ(1)} respectively, and their intersection will, in general, be disjoint. But, as
the negotiation progresses, the number of unique proposals they have made increases,
which means that i increases, which means that xi and yi decrease (as a function of
i), and so Ωxi

1 and Ωyi

2 become larger. Then, after they have both made b− 1 unique
offers, their intersection becomes nonempty, so at that point there are some offers that
both agents are willing to accept. The balance set is by definition the set of these
offers, and so the utility values the agents receive from the accepted offer must be
greater than or equal to their balance values.

The balance index defines how many negotiation rounds are necessary in order for
two MiCRO agents to come to an agreement. It turns out that for many domains that
were used in ANAC, the balance index is much smaller than the total number of offers,
meaning that MiCRO can still negotiate successfully even though the domain might
seem too large. For example, the Smartphone domain from ANAC 2013 has a size of
|Ω| = 12 000, but its balance index is only 139, so two MiCRO agents only need to
exchange 139 proposals each, to come to an agreement.

From the definition it is immediately clear that xβ ≥ xb and yβ ≥ yb must hold.
However, it may not be clear that these inequalities can sometimes be strict. Therefore,
we show in Figure 3 an example where indeed xβ > xb.

The following lemma is necessary for our proof of Lemma 4. Geometrically, it says
that if we draw a diagram of the domain, such as in Figures 1 and 2, we can always
draw a horizontal line and a vertical line such that each element of the balance set is
on one of those two lines.
Lemma 3. Let xβ and yβ denote the balance values. Then, for any offer ω in the
balance set we either have u1(ω) = xβ or u2(ω) = yβ.
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Fig. 1: Diagram of the Ultimatum domain, which was used in ANAC 2013, containing
nine offers. The horizontal axis represents the utility u1 of agent α1, while the vertical
axis represents the utility u2 of agent α2. Each dot represents one offer. The red dot
represents an offer that maximizes both the sum and the product of the utility of the
two agents.

Proof. Let ωi ∈ Ωxb
1 ∩ Ωyb

2 be some element from the balance set. We need to prove
that either u1(ωi) = xβ or u2(ωi) = yβ . In fact, we will prove the slightly stronger
conclusion that either u1(ωi) = xb or u2(ωi) = yb.

Recall that, by definition of the balance set, Ω
xb−1

1 ∩ Ω
yb−1

2 must be empty, so we
have ωi ̸∈ Ω

xb−1

1 ∩ Ω
yb−1

2 , which means that either xb−1 > u1(ωi) or yb−1 > u2(ωi).
Furthermore, since ωi ∈ Ωxb

1 ∩ Ωyb

2 we have u1(ωi) ≥ xb and u2(ωi) ≥ yb. Combining
these facts we conclude that we must have:

xb−1 > u1(ωi) ≥ xb or yb−1 > u2(ωi) ≥ yb. (2)

Now, recall that xb−1 and xb are the utility values for α1 of ωb−1 and ωb, and these two
offers are consecutive in α1’s sorted list, so there is no offer ω for which xb−1 > u1(ω) >
xb. And for the same reason there is no offer for which yb−1 > u2(ω) > yb. Combining
this with (2), we conclude that we must have either u1(ωi) = xb or u2(ωi) = yb, but
xb and yb are the lowest utility values that any offer in Ωxb

1 ∩Ω
yb

2 could possibly have,
so if u1(ωi) = xb then u1(ωi) = xβ and similarly, if u2(ωi) = yb then u2(ωi) = yβ .

6.2 Pareto Optimality

The concepts defined in the following definition are common in the literature, but we
repeat them here for the sake of self-containment.
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Fig. 2: The Ultimatum domain. Left: the blue lines are drawn through the values x1

and y1. Therefore, the area to the right of the vertical blue line represents Ωx1
1 and

the area above the horizontal blue line represents Ωy1

2 . We see that Ωx1
1 ∩ Ωy1

2 = ∅.
Center: the blue lines are drawn through the values x2 and y2. Therefore, the area
to the right of the vertical blue line represents Ωx2

1 and the area above the horizontal
blue line represents Ωy2

2 . We see that Ωx2
1 ∩ Ωy2

2 = ∅. Right: the blue lines are drawn
through the values x3 and y3. We now see that Ωx3

1 ∩ Ωy3

2 contains exactly one offer.
This means that the balance index equals 3, and that Ωx3

1 ∩ Ωy3

2 is the balance set.
Furthermore, we notice that the only element of the balance set happens to be exactly
the offer that maximizes both the product and the sum of the agents’ utilities, so we
say this is a balanced domain.

Definition 16. We say an offer ωi weakly dominates another offer ωj if u1(ωi) ≥
u1(ωj) and u2(ωi) ≥ u2(ωj), and at least one of these inequalities is strict. We say
that ωi strongly dominates ωj if both inequalities are strict. An offer ωi is weakly
Pareto-optimal if it is not strongly dominated by any other offer, and we say ωi is
strongly Pareto-optimal if it is not weakly dominated by any other offer.

Lemma 4. All elements of a balance set are weakly Pareto optimal.

Proof. Suppose that ωi is an element of the balance set Ωxb
1 ∩Ω

yb

2 which is not weakly
Pareto optimal. So, there exists another offer ωj with u1(ωj) > u1(ωi) and u2(ωj) >
u2(ωi). Clearly, this means that ωj ∈ Ωxb

1 ∩Ω
yb

2 , so ωj is also in the balance set. Now,
note that by definition of the balance values we have u1(ωi) ≥ xβ and u2(ωi) ≥ yβ , and
by Lemma 3, we must have either u1(ωj) = xβ or u2(ωj) = yβ . Combined this means
that either u1(ωi) ≥ u1(ωj) or u2(ωi) ≥ u2(ωj), which contradicts our assumption
about ωj .

The following proposition will be useful later on to prove Theorem 2, but we think
it is also interesting by itself.
Proposition 1. If MiCRO makes an agreement with a consistent opponent (under
the AOP), then this agreement will be weakly Pareto-optimal.

Proof. We prove this by contradiction. Assume that α1 applies MiCRO, and that the
two agents make an agreement ωk that is not weakly Pareto-optimal, i.e. there exists
some other offer ωi with u1(ωi) > u1(ωk) and u2(ωi) > u2(ωk).
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Fig. 3: An example of a domain where xβ > xb. This domain has balance index
b = 3. Note that the offer indicated in red is the only element of the balance set, and
has utility values u1(ω) = 0.7 and u2(ω) = 0.6. So, these are also the balance values:
xβ = 0.7, yβ = 0.6. However, we see that xb = x3 = 0.4.

Let s denote the final state of the negotiations, and t the time at which ωk was
accepted. We consider two cases: 1) the case that α1 accepted ωk and 2) the case that
α2 accepted ωk.

Case 1: (1, a, ωk, t) ∈ s. If α1 accepted ωk then it must have been proposed by α2.
This means all conditions of Lemma 2 are satisfied, with ωj = ωk, so indeed we have
a contradiction.

Case 2: (2, a, ωk, t) ∈ s. If α2 accepted ωk, then α1 must have proposed it. Since
MiCRO proposes all possible offers one by one in order of decreasing utility, this means
that, at some earlier time t′, it must also have proposed ωi, i.e. (1, p, ωi, t

′) ∈ s<t.
Note that the first three conditions of Def. 12 are now satisfied. So, if the fourth one
is true as well then α2 accepting ωk would be an inconsistent acceptance, which is
a contradiction. On the other hand, if the fourth condition does not hold, we have
∃t′′ : t′ < t′′ < t ∧ (2, p, ωi, t

′′) ∈ s (i.e. at t′′ agent α2 has re-proposed ωi after α1

proposed it earlier at time t′). But in that case, by definition of MiCRO, α1 would
have accepted ωi directly after t′′, so the final agreement would have been ωi instead
of ωk. This is again a contradiction.

6.3 Importance of the Balance Values

In this subsection we will show that, as long as its opponents are consistent, MiCRO
never makes agreements below its balance values.3

Theorem 2. If an agent αi applies MiCRO and its opponent is consistent, then
(under the AOP) they will never make any agreement ω for which ui(ω) is below αi’s
balance value.

Proof. We will assume (w.l.o.g.) that it is α1 that applies MiCRO.

3It may occasionally happen that MiCRO makes proposals below its balance value, but a consistent
opponent would never accept those.
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Let ωi be an offer in Ωxb
1 ∩ Ωyb

2 such that xi = xβ (i.e. ωi is an element in the
balance set, for which α1’s utility is minimal) and let ωk be any offer for which xi > xk.
We need to prove that ωk will never be accepted. We distinguish two separate cases,
namely 1) the case that xb > xk and 2) the case that xk ≥ xb.

Case 1: Suppose xb > xk. We will show that there is an offer ωj such that the
conditions of Lemma 1 are satisfied. First, note that the first condition of Lemma 1 is
indeed satisfied because, as we already noted, xi > xk. Furthermore, by definition of
MiCRO, α1 would only propose or accept ωk if α2 has made at least k − 1 different
proposals, and since xb > xk, which implies b < k, this means that α2 must have made
at least b different proposals. Note that by definition of the number yb there are at
most b − 1 proposals ω for which u2(ω) > u2(ωπ(b)) = yb, so α2 must have proposed
at least one proposal ωj for which yb ≥ u2(ωj). Finally, note that since ωi is in the
balance set we have u2(ωi) ≥ yb, and thus u2(ωi) ≥ u2(ωj). This means the second
and third condition of Lemma 1 are also satisfied, which proves Case 1.

Case 2: Suppose xk ≥ xb. We first claim that in this case we have u2(ωi) > u2(ωk).
Suppose the opposite, i.e. that u2(ωk) ≥ u2(ωi). Note that from the assumption that
ωi is in the balance set we have u2(ωi) ≥ yb, so we then must have u2(ωk) ≥ yb. But
note that if both xk ≥ xb and u2(ωk) ≥ yb hold, then ωk ∈ Ωxb

1 ∩ Ωyb

2 , and therefore,
by the definition of xβ , we have xk ≥ xβ = xi, but that is in contradiction to our
assumption that xi > xk. So we conclude that u2(ωi) > u2(ωk) indeed holds. If we
now combine this with the fact that xi > xk we conclude that ωi strictly dominates
ωk. Therefore, by Proposition 1, ωk could never be the accepted offer, which proves
Case 2.

Corollary 1. If two agents that both apply the MiCRO strategy make an agreement
(under the AOP), then that agreement must be an element of the balance set.

Proof. Suppose they make an agreement ω. Then, by combining Theorem 1 and
Theorem 2, it follows that we must have u1(ω) ≥ xβ and u2(ω) ≥ yβ . This means that,
by definition of the balance values, we must also have u1(ω) ≥ xb and u2(ω) ≥ yb,
which in turn means that ω is in the balance set.

When the balance set contains more than one offer, the question which of those
offers two MiCRO agents would agree upon depends on who starts the negotiations.
For more details about this we refer to Appendix B.

7 Equilibrium Properties of MiCRO

In this section we will prove that MiCRO is a best response against itself. While our
goal is to prove this under the assumption that the agents do not have knowledge about
each other’s utility functions, we actually prove something much stronger, because we
never actually use this assumption anywhere. That is, all our lemmas and theorems
hold regardless of whether the agents have such knowledge or not.

Specifically, if agent α1 applies MiCRO, then it does not matter how much infor-
mation it has about the utility function of α2, because the MiCRO strategy simply
does not use such information. Furthermore, when we say that the best response for
α2 is to also use MiCRO, we mean that there is no better strategy for α2 even if α2
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has full knowledge of α1’s utility function, and therefore it certainly does not have any
better strategy if it does not have such knowledge.4

7.1 MiCRO is an Equilibrium Strategy

Before we can prove our main theorem we need the following lemma.
Lemma 5. Suppose we have a balance set with two different offers ωi and ωk, such
that u1(ωi) > u1(ωk) and u2(ωk) > u2(ωi) (i.e. neither of the two weakly dominates
the other). Then, there are exactly b−1 offers ω with u1(ω) > u1(ωk) and exactly b−1
offers ω with u2(ω) > u2(ωi), where b is the balance index.

Proof. By definition of the balance set we have u1(ωk) ≥ xb and u2(ωi) ≥ yb, so we
must have:

u1(ωi) > xb and u2(ωk) > yb

We will only give the proof that there are exactly b− 1 offers ω with u1(ω) > u1(ωk).
The proof that there are also exactly b − 1 offers ω with u2(ω) > u2(ωi) goes
analogously.

First, suppose the number of offers ω with u1(ω) > u1(ωk) is less than b−1. Then,
for the offer ωb−1 that appears on position b− 1 in α1’s list, we would have u1(ωk) ≥
u1(ωb−1) = xb−1. Furthermore, since u2(ωk) > yb, we have that u2(ωk) ≥ yb−1, and
thus that ωk ∈ Ω

xb−1

1 ∩ Ω
yb−1

2 . But that is not possible, because, by definition of the
balance index, that set should be empty. On the other hand, if there were more than
b − 1 offers ω for which u1(ω) > u1(ωk), then we would have u1(ωb) > u1(ωk). But
then ωk ̸∈ Ωxb

1 and thus ωk ̸∈ Ωxb
1 ∩ Ωyb

2 , which is in contradiction to the assumption
that ωk is in the balance set.

We will next state our main theorem. Although it requires a fair amount of condi-
tions, it happens that for all ANAC domains that we analyzed (those of ANAC 2012,
2013, and 2021), the first two conditions are indeed satisfied. Moreover, note that the
second condition is only a very minor one, since we recall from Lemma 4 that the ele-
ments of a balance set are always at least weakly Pareto-optimal. Regarding the third
condition, experiments in [1] have shown that the typical deadline of 180 seconds used
in the ANAC competitions is indeed sufficiently long for two MiCRO agents to come
to an agreement, so this last condition typically also holds.5

Remark 5. All three conditions of Theorem 3 typically hold in (the main leagues of)
the ANAC competitions.
Theorem 3. Consider the extensive-form game defined by a negotiation domain D
and the alternating offers protocol with deadline T (as defined in Section 3.2), and
assume that the following conditions hold:

� The balance values of D lie above the agents’ respective reservation values.
� All elements of the balance set of D are strongly Pareto-optimal.
� The deadline T is sufficiently long for two MiCRO agents to come to an

agreement.

4For readers familiar with Bayesian games, we can say that MiCRO vs. MiCRO is an ex-post Nash
Equilibrium.

5In some recent editions of ANAC a deadline of 60 seconds was used, but even in that case MiCRO only
fails on the very largest domains.
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Then, among all consistent negotiation strategies, MiCRO is a best response against
itself.

Proof. Suppose α1 plays MiCRO, and suppose that α2 has two options to select as
its strategy: MiCRO and some other consistent strategy σ. We will show that if α2

selects σ, it will not be able to score higher than when it selects MiCRO.
First note that if both agents apply MiCRO, and the deadline is long enough,

then the agents will certainly come to an individually rational agreement. This follows
directly from the definition of MiCRO and the assumption that the balance values lie
above the reservation values. Let us call this agreement ωi.

Now, let us first suppose that if α2 selects σ, then they do not come to an agree-
ment. In that case, the agents receive their respective reservation values, so α2 would
have been better off selecting MiCRO. So, for this case the theorem indeed holds.

Next, let us suppose that if α2 selects σ, then they do come to an agreement, which
we will call ωk. To prove the theorem we need to show that α2 does not prefer ωk over
ωi. That is, we will show that the following assumption leads to contradiction:

u2(ωk) > u2(ωi) (3)

The rest of this proof consists of showing that the conditions of Lemma 1 are satisfied,
so indeed we have a contradiction. We will do this in three steps: Firstly, we will show
that u1(ωi) > u1(ωk) holds (which is the first condition of Lemma 1). Secondly, we
will show that ωk must be in the balance set. Thirdly, we will use this fact to show
that α2 must have proposed at least one offer ωj for which u2(ωi) ≥ u2(ωj) before ωk

was accepted (the other two conditions of Lemma 1).
Step 1: We know from Corollary 1 that ωi must be in the balance set. Therefore,

by Eq. (3) and the assumption that all elements of the balance set are strongly Pareto-
optimal, we have: u1(ωi) > u1(ωk),

Step 2: Since ωi is in the balance set, we have u2(ωi) ≥ yb. Combined with Eq. (3),
this leads to:

u2(ωk) > yb (4)

Furthermore, by Theorem 2 we must have u1(ωk) ≥ xβ . And since by definition of the
balance values we have xβ ≥ xb, we have:

u1(ωk) ≥ xb (5)

Combining Equations (4) and (5) we conclude that ωk is also in the balance set.
Step 3: We will now show that α2 must have proposed at least one offer ωj with

u2(ωi) ≥ u2(ωj) before ωk was accepted. Since we know that ωi and ωk are both in
the balance set, and since we have assumed that the elements of the balance set are
strongly Pareto-optimal, we can apply Lemma 5. Thus, we know there are exactly b−1
offers ω with u2(ω) > u2(ωi). This means that, at any time during the negotiations,
we can distinguish between the following four situations:

� Situation 1: α2 has made less than b− 1 different proposals.
� Situation 2: α2 has made more than b− 1 different proposals.
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� Situation 3: α2 has made exactly b − 1 different proposals, and for at least one
of them it holds that u2(ωi) ≥ u2(ω).

� Situation 4: α2 has made exactly b− 1 different proposals, and they are exactly
those offers for which u2(ω) > u2(ωi).

In the first situation, α1 would not yet be willing to propose or accept ωk. This is
because, by Lemma 5, we know there are exactly b − 1 offers that are strictly better
for α1 than ωk, which means that ωk must be at position b or later on MiCRO’s list,
and thus α1 would only be willing to propose or accept it when α2 has made at least
b− 1 different proposals. So, α1 will propose some other offer, and α2 will not accept
that offer, because that would contradict the assumption that negotiations end with
ωk being accepted. Therefore, negotiations will continue until at least one of the three
other situations has occurred. If Situation 2 or 3 occurs, then indeed we have shown
what we wanted to show. Therefore, we are only left to consider Situation 4. In this
situation α2 must have already proposed ωk (by Eq. 3). The question is now how α1

responds to this situation. We can consider the following options:
� Response 1: α1 accepts ωk.
� Response 2: α1 proposes ωk.
� Response 3: α1 accepts some other offer.
� Response 4: α1 proposes some other offer.

Now, it is important to understand that if α1 and α2 both play MiCRO, then at some
point Situation 4 would also occur, and that α1 should then reply to Situation 4 in
exactly the same way, as when α2 plays σ. This is because, by definition of MiCRO, α1’s
response only depends on which unique offers have been proposed by the opponent,
and not on the order in which they were proposed.6

We therefore conclude that Response 1 cannot occur, because if α1 accepts ωk,
then it would do the same if α2 plays MiCRO, but that would be in contradiction
with the assumption that MiCRO vs. MiCRO results in ωi being accepted.

For the same reason, Response 2 also cannot occur, because if α1 proposes ωk

when α2 plays MiCRO, then α2 would accept it (since α2 itself had already proposed
ωk earlier), but that would again be in contradiction to the assumption that MiCRO
vs. MiCRO results in ωi being accepted.

Furthermore, the fact that Response 3 cannot occur is trivial, because we have
assumed that the agents agree on ωk.

So, we conclude that Response 4 must occur, which means that α1 will propose
some offer that is not ωk, and therefore α2 will not accept that offer (because we
assumed only ωk would be accepted). This means that negotiations must continue
until either Situation 2 or Siutation 3 has occurred, which means that at some point α2

must propose some offer ωj with u2(ωi) ≥ u2(ωj), which is what we wanted to show.
Combining this result with the result of Step 1, we see that all conditions of

Lemma 1 are satisfied, so we have a contradiction.

6Actually, α1’s response also depends on how exactly MiCRO sorts its list when there are multiple offers
between which it is indifferent. However, we are looking at what happens when α2 makes a unilateral
deviation from MiCRO to σ, so we have to assume that α1 sorts his list in exactly the same way in either
case.
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7.2 Semi-consistent Strategies

We will now present a stronger version of Theorem 3, which allows the opponents to
make inconsistent acceptances.
Definition 17. We say a strategy is semi-consistent if it never makes any inconsis-
tent proposals or inconsistent rejections (but it may make inconsistent acceptances).
Theorem 4. Suppose the same conditions as Theorem 3. Then, among all semi-
consistent negotiation strategies, MiCRO is a best response against itself.

Proof. Suppose again that α1 plays MiCRO, and that α2 plays some alternative strat-
egy σ. If α2 does not make any inconsistent acceptance, then it behaves like a consistent
strategy, so by Theorem 3 σ cannot be a better response against MiCRO. On the
other hand, suppose that α2 does accept some offer ω and that this is an inconsis-
tent acceptance. This means that at some earlier time α1 proposed a better offer ω′.
Then, α2 would have been better off accepting that offer, and thus σ was not a best
response.

7.3 Is MiCRO vs. MiCRO a Subgame Perfect Equilibrium?

We have shown that MiCRO vs. MiCRO forms a Nash equilibrium. However, since we
defined negotiations as an extensive-form game, an important question is whether it is
also a subgame perfect equilibrium (SPE). We will here quickly discuss this question,
informally. Recall that a pair of strategies is an SPE iff, for every game state s, it is
a Nash equilibrium on the subgame starting at s.

First, note that the common way to prove subgame perfection is to use backward
induction. However, we cannot use this technique for negotiations, because, as we
recall from Section 3.2, the state transition is determined by a random variable which
can have an infinite number of possible values. Therefore, each state has an infinite
number of possible successor states, which makes backward induction difficult to apply.
Instead, we use a different approach.

Suppose we have a state s = (a1, a2, . . . , ak) and let tk be the time of ak. Then, as
long as tk is small enough compared to T , the proof of Theorem 3 continues to hold
when the negotiations reach state s. In other words, for any state s that is far enough
from the deadline, MiCRO vs. MiCRO is indeed a Nash equilibrium for the subgame
starting at s.

However, if the the negotiations reach a state that is too close to the deadline,
it may happen that there is not enough time for two MiCRO agents to make an
agreement, and so the agents would be better off if they deviated to a strategy that
concedes faster, in order to secure a deal. Therefore, MiCRO vs. MiCRO is technically
not an SPE.

This means that an agent could try to stall the negotiations on purpose, so as to
reach a state where the agents are forced to deviate to a different strategy. However,
under the conditions of Theorem 3, for at least one of the two agents this would result
in a worse outcome (since any deal between MiCRO and MiCRO would be Pareto
optimal). So, an agent that tries to apply this approach would have to make sure it
concedes slower than its opponent. But that would mean that if two agents both tried
to apply this approach, then they would fail to make an agreement. Therefore, trying
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to stall the negotiations in order to reach a subgame where MiCRO vs. MiCRO is not
a Nash equilibrium will not yield any benefit.

We therefore argue, informally, that, even though MiCRO vs. MiCRO is technically
not an SPE, the players cannot benefit from deviating to any other consistent strategy.
That is, it forms a Nash equilibrium on all relevant subgames, and therefore still
captures the essence of an SPE.

8 Optimality of MiCRO in the ANAC Domains

Theorem 3 shows that, under the given conditions, MiCRO vs. MiCRO forms a Nash
equilibrium. By itself this does not necessarily mean that MiCRO is an optimal strat-
egy, because there could be other strategies that also form Nash equilibria but with
better outcomes. However, in this section we will show that on many of the ANAC
domains the agreement made between two MiCRO agents is, in fact, an optimal one.

8.1 Optimality

We first need to formally define the notion of an optimal agreement. This is a complex
topic and many different definitions have been proposed in the literature. Here, we
will focus on two such definitions: the Nash Bargaining Solution, and the Maximum
Social Welfare Solution.

Nash proved that, under certain assumptions, an optimal agreement between two
negotiators, is one that maximizes the product of the agents’ utilities [3]. This is known
as the Nash bargaining solution (NBS).
Definition 18. The Nash bargaining solution is a set of offers N ⊆ Ω defined as:

N := argmax
ω∈Ω

{(u1(ω)− rv1) · (u2(ω)− rv2)} (6)

However, one of Nash’s assumptions is that the offer space is a convex set, which
is not the case for the ANAC domains, which have discrete offer spaces, so the NBS
may not be the right solution concept for the ANAC domains. Another consequence
of the non-convexity of the ANAC domains, is that the NBS is not always a single
offer, but rather a set of offers.

It was therefore shown in [5] that in a tournament setting with finite domains, two
optimal negotiation strategies would in fact come to the agreement that maximizes
the sum of the agents’ utilities, rather than the product. We will here refer to this
as the maximum social welfare solution (MSWS). Note that, just like the NBS, the
MSWS may return a set of offers, rather than a single offer.
Definition 19. The maximum social welfare solution is a set of offers SW ⊆ Ω
defined as:

SW := argmax
ω∈Ω

{u1(ω) + u2(ω)} (7)

Since we do not want to get into the discussion here which of these solution concepts
is better, we will consider both of them. Furthermore, we will see that in most of the
ANAC domains the two concepts coincide anyway.
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8.2 Balanced Negotiation Domains

We now define the notion of a balanced negotiation domain. On such domains, any
agreement made by two MiCRO agents is always an optimal one. So, two MiCRO
agents are, by definition, optimal on such domains. Surprisingly, it turns out that
many of the ANAC domains indeed happen to be balanced, or close to balanced, even
though we do not see any obvious reason why this would have to be true.
Definition 20. Given some negotiation domain D, let SC ⊆ Ω be some set of Pareto-
optimal offers that are considered ‘optimal’ (according to some solution concept) and
let B denote the balance set of D. Then we say the domain is balanced with respect
to SC, if and only if B ⊆ SC.

In other words, a domain is balanced if any agreement made between two MiCRO
agents is in the set of optimal agreements SC.

The Ultimatum domain, displayed in Figures 1 and 2 is a nice example of a domain
that is balanced w.r.t. the NBS, as well as w.r.t. the MSWS (in fact, the NBS and the
MSWS coincide in this domain).

For those domains that are not balanced, we still want to know how close they are
to being balanced, so we want to define a quantity bsSC , which we call the balance
score, that measures this. To explain how we calculate it, first suppose there is exactly
one optimal solution ω∗ and the balance set contains exactly one element ω. Then,
note that for any agent αi, the quantity ui(ω

∗)−ui(ω) represents how much that agent
loses from making agreement ω instead of the optimal agreement ω∗. Furthermore,
since ω∗ must be Pareto optimal, and ω is weakly Pareto optimal (by Lemma 4), this
value can only be positive for one of the two agents. So, we calculate bsSC as the loss
for that agent. That is, bsSC = maxi∈{1,2}{ui(ω

∗)− ui(ω)}. If bsSC = 0 it means ω is
itself optimal, so the domain is balanced, while a higher value of bsSC means that ω
is farther away from the optimal solution, so the domain is less balanced.

In case there are multiple optimal offers ω∗ ∈ SC or multiple offers ω ∈ B in the
balance set, then we can generalize this as follows:

bsSC := max
ω∈B

min
ω∗∈SC

max
i∈{1,2}

{ui(ω
∗)− ui(ω)} (8)

Here, the max and min operators are chosen such that we have bsSC = 0 if and only
if the domain is balanced.

We have calculated the balance scores of the 35 domains7 that were used in ANAC
2012–2013, with respect to the NBS (bsN ) and to the MSWS (bsSW). They are dis-
played them in Table 4. These domains are normalized so that for each agent the worst
possible offer always has utility value 0.0 and the best possible offer always has utility
value 1.0. We see that for 29 of these domains we have bsN ≤ 0.1, while for 20 of them
we have bsN ≤ 0.05, and for 14 of them we even have bsN = 0.0, so indeed in these
domains the elements of the balance set often lie very close to the NBS. Similarly, if
we use the MSWS as the reference optimal solution, then we find that for 25 of these
domains we have bsSW ≤ 0.1, while for 18 of them we have bsSW ≤ 0.05, and for 12

7With their reservation values set to 0.
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Domain |Ω| b Balance Set NBS MSWS bsN bsSW
Acquisition 384 50 (0.91 , 0.91) (0.94 , 0.90) (0.94 , 0.90)† 0.03 0.03
AirportSiteSelection 420 36 (0.77 , 0.81) (1.00 , 0.67) (1.00 , 0.67) 0.23 0.23
Amsterdam 3024 128 (0.83 , 0.86) (0.83 , 0.86) (0.83 , 0.86) 0.00 0.00
Barbecue 1440 112 (0.82 , 0.83) (0.80 , 0.87) (0.80 , 0.87)† 0.04 0.04
Barter 80 34 (0.65 , 0.65) (0.65 , 0.65) (0.47 , 0.85) 0.00 0.20
Camera 3600 82 (0.82 , 0.89) (0.82 , 0.89) (0.82 , 0.89) 0.00 0.00
Car 15625 2443 (0.93 , 0.94) (0.94 , 0.93) (0.94 , 0.93) 0.01 0.01
Energy 390625 66489 (0.63 , 0.62) (0.65 , 0.61) (0.78 , 0.48) 0.02 0.15
EnergySmall 15625 2692 (0.71 , 0.64) (0.68 , 0.71) (0.68 , 0.71) 0.07 0.07
EnglandvsZimbabwe 576 52 (0.82 , 0.79) (0.91 , 0.73) (0.91 , 0.73) 0.09 0.09
Fitness 3520 293 (0.82 , 0.79) (0.77 , 0.84) (0.77 , 0.84) 0.05 0.05
FiftyFifty 11 6 (0.50 , 0.50) (0.50 , 0.50) (0.50 , 0.50)† 0.00 0.00
FlightBooking 48 14 (0.74 , 0.90) (0.74 , 0.90) (0.74 , 0.90) 0.00 0.00
Grocery 1600 21 (0.84 , 0.90) (0.84 , 0.90) (0.84 , 0.90) 0.00 0.00
HouseKeeping 384 64 (0.78 , 0.83) (0.84 , 0.78) (0.94 , 0.69) 0.06 0.16
ItexvsCypress 180 35 (0.63 , 0.71) (0.72 , 0.67) (0.72 , 0.67) 0.10 0.10
Laptop 27 4 (0.87 , 0.87) (1.00 , 0.82) (1.00 , 0.82) 0.13 0.13
MusicCollection 4320 65 (0.89 , 0.89) (0.94 , 0.86) (0.94 , 0.86) 0.05 0.05
NiceOrDie 3 2 (0.30 , 0.30) (1.00 , 0.16)† (1.00 , 0.16)† 0.70 0.70
Outfit 128 12 (0.86 , 0.86) (0.80 , 0.94) (0.74 , 1.00) 0.08 0.14
Phone 1600 21 (0.84 , 0.89) (0.84 , 0.89) (0.84 , 0.89) 0.00 0.00
RentalHouse 60 21 (0.80 , 0.74) (0.80 , 0.74) (0.80 , 0.74)† 0.00 0.00
Supermarket 112896 5174 (0.79 , 0.71) (0.86 , 0.68) (0.86 , 0.68)† 0.07 0.07
Travel 188160 5425 (0.88 , 0.80) (0.88 , 0.80) (0.92 , 0.76) 0.00 0.04
Animal 1152 28 (0.91 , 0.94) (0.91 , 0.94) (0.91 , 0.94) 0.00 0.00
Coffee 112 33 (0.64 , 0.67) (0.92 , 0.56) (0.92 , 0.56) 0.28 0.28
DefensiveCharms 36 8 (0.78 , 0.77) (0.72 , 0.84) (0.72 , 0.84) 0.07 0.07
DogChoosing 270 16 (0.99 , 0.95) (0.99 , 0.95) (0.99 , 0.95) 0.00 0.00
Icecream 720 42 (0.89 , 0.90) (0.89 , 0.90) (0.89 , 0.90) 0.00 0.00
Kitchen-domain 15625 1816 (0.95 , 0.96) (0.95 , 0.98) (0.95 , 0.98) 0.02 0.02
Lunch 3840 692 (0.72 , 0.69) (0.83 , 0.63) (0.86 , 0.60) 0.11 0.14
planes 27 3 (0.88 , 0.88) (1.00 , 0.82) (1.00 , 0.82) 0.12 0.12
SmartPhone 12000 139 (0.84 , 0.83) (0.89 , 0.80) (0.89 , 0.80) 0.05 0.05
Ultimatum 9 3 (0.61 , 0.62) (0.61 , 0.62) (0.61 , 0.62) 0.00 0.00
Wholesaler-domain 56700 739 (0.78 , 0.79) (0.78 , 0.79) (0.78 , 0.79) 0.00 0.00

Table 4: The balance scores of the ANAC domains. For each of these domains the balance
set contains just one element. The cases where NBS or MSWS contain more than one
element are are marked with a dagger. In those cases, the offer shown in the table is the one
selected by the max or min operators in Eq. (8).

of them we even have bsSW = 0.0. So, we conclude that the elements of the balance
set also often lie very close to the MSWS.

8.3 Why Are So Many ANAC Domains Balanced?

In this section we will try to answer the question why so many of the ANAC domains
are (close to) balanced. The following proposition may give some intuition about this.
Specifically, it tells us that it is related to a kind of symmetry.
Proposition 2. Let ω∗ be some offer, and let x∗ := u1(ω

∗) and y∗ := u2(ω
∗). Then,

if ω∗ is Pareto-optimal and |Ωx∗

1 | = |Ω
y∗

2 |, we have that x∗ and y∗ are exactly the
balance values.
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Domain Type bsN ≤ 0.10 bsN ≤ 0.05 bsN = 0.0
ANAC 2012/2013 (handcrafted) 29/35 (83%) 20/35 (57%) 14/35 (40%)
Genius Web (randomly generated) 32/50 (64%) 24/50 (48%) 17/50 (34%)
Nestlé/Pladis (real-world) 6/10 (60%) 3/10 (30%) 1/10 (10%)

Table 5: This table displays, for each type of domain, in how many
cases the balance score bsN was smaller than or equal to 0.10, 0.05 or
0.0, respectively. We see that the handcrafted domains are more balanced
than the randomly generated domains, while the randomly generated
domains, in turn, are more balanced than the real-world domains.

Domain Type bsSW ≤ 0.10 bsSW ≤ 0.05 bsSW = 0.0
ANAC 2012/2013 (handcrafted) 25/35 (71%) 18/35 (51%) 12/35 (34%)
Genius Web (randomly generated) 27/50 (54%) 20/50 (40%) 12/50 (24%)
Nestlé/Pladis (real-world) 2/10 (20%) 1/10 (10%) 0/10 (0%)

Table 6: This table displays, for each type of domain, in how many
cases the balance score bsSW was smaller than or equal to 0.10, 0.05 or
0.0, respectively. Again, we see that the handcrafted domains are more
balanced than the randomly generated domains, while the randomly gen-
erated domains, in turn, are more balanced than the real-world domains.

Proof. Let (ω1, ω2, . . . ωK) be a list containing all offers in the domain, such that
u1(ω1) ≥ u1(ω2) ≥ · · · ≥ u1(ωK), and such that among all offers ω for which u1(ω) =
u1(ω

∗), ω∗ appears last in the list. We let xi be shorthand for u1(ωi), so we have:

x1 ≥ x2 ≥ · · · ≥ xk (9)

Then, if j is the position of ω∗ in this list, we have xj = x∗ and |Ωx∗

1 | = |Ω
xj

1 | = j.
Similarly, we can sort the orders according to α2’s utility. If j′ is the position of ω∗

in that list, then we get yj′ = y∗ and |Ωy∗

2 | = |Ω
yj′

2 | = j′, but we have by assumption

that |Ωx∗

1 | = |Ω
y∗

2 |, so j = j′. We therefore have that ω∗ ∈ Ω
xj

1 ∩ Ω
yj

2 .
Now, let k be the smallest integer for which ω∗ ∈ Ωxk

1 ∩Ω
yk

2 . Clearly, k ≤ j, which,
by (9), implies xk ≥ xj . Furthermore, since ω∗ ∈ Ωxk

1 we have x∗ ≥ xk, and since
x∗ = xj we conclude that xk = xj = x∗. Similarly we can show that yk = yj = y∗.

We now want to show that Ωxk
1 ∩ Ωyk

2 is the balance set. To do this, we have to
prove that Ω

xk−1

1 ∩ Ω
yk−1

2 is empty. Suppose the contrary. Then there is some offer
ω ∈ Ω

xk−1

1 ∩ Ω
yk−1

2 , which means that u1(ω) ≥ xk−1 ≥ xk = x∗ = u1(ω
∗) and

u2(ω) ≥ yk−1 ≥ yk = y∗ = u2(ω
∗). Now, if one of these inequalities is strict, then

we have a contradiction, because it would mean that ω dominates ω∗, while ω∗ was
assumed to be Pareto-optimal. On the other hand, if all these inequalities are actually
equalities, then we also have a contradiction, because then we would have xk−1 = x∗

and yk−1 = y∗ which would imply ω∗ ∈ Ω
xk−1

1 ∩Ωyk−1

2 , which contradicts our definition
of k as the smallest integer for which ω∗ ∈ Ωxk

1 ∩ Ωyk

2 .
Finally, since x∗ = xk and y∗ = yk, and since xk and yk are by definition the

lowest possible utility values any offer in Ωxk
1 ∩Ω

yk

2 can have, and since we have showed
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that Ωxk
1 ∩Ωyk

2 is the balance set, we conclude that x∗ and y∗ are indeed the balance
values.

Note that if ω∗ is in the NBS or MSWS (or any other solution that could be
considered ‘optimal’) then it is indeed Pareto-optimal. So, if the domain happens to

satisfy the symmetry condition |Ωx∗

1 | = |Ω
y∗

2 |, then the utility values of this optimal
solution coincide exactly with the balance values.

We can see in the right-hand image of Figure 2 that this indeed holds for the
Ultimatum domain. If we draw a vertical line through the NBS, then there are exactly
3 offers on or to the right of this line, so we have |Ωx∗

1 | = 3. Similarly, if we draw a
horizontal line through the NBS, then there are exactly 3 offers on or above this line,

so we have |Ωy∗

2 | = 3. This means we have |Ωx∗

1 | = |Ω
y∗

2 |, so, according to Proposition
2, the balance values should coincide with the NBS. Indeed, we see in the center
image of Figure 2 that Ωx2

1 ∩ Ωy2

2 = ∅, while we can see in the right-hand image that
Ωx3

1 ∩ Ωy3

2 ̸= ∅. Therefore, Ω
x3
1 ∩ Ωy3

2 is the balance set and it contains exactly one
element, which happens to be the NBS. So, indeed, the balance values coincide with
the NBS.

Of course, this still begs the question why exactly these domains are so symmet-
rical. One thing to note is that these domains were handcrafted by people [8, 34], so
one hypothesis is that the symmetry is caused by the fact that the people who created
them had a (possibly subconscious) preference for symmetry. Another hypothesis, is
that this symmetry may emerge naturally when linear domains are created at ran-
dom (similar to how a sum of multiple random variables naturally converges towards
a Gaussian distribution).

To investigate this, we also analyzed two other types of domains: a set of randomly
generated negotiation domains, and a set of negotiation domains obtained from a real-
world industrial problem. For the randomly generated domains we use the 50 domains
from the GeniusWeb framework [35] that were used in ANAC 2021, while for the
real-world domains we use the Nestlé/Pladis domains from [36]. These represent the
negotiation between two logistics companies about the exchange of truck loads, and
were generated from real-world data.8 The results of this analysis are displayed in
Tables 5 and 6.

We see in Table 5 that for the handcrafted domains in 83% of the cases (i.e. in 29
out of the 35 domains) the balance score w.r.t. the NBS was smaller than or equal to
0.10, while for the randomly generated domains this was only 64%, and for the real-
world problems this was only 60%. Similarly, if we use sN ≤ 0.05 or sN = 0.0 as the
criterion, then we also see that the handcrafted domains are more balanced than the
random domains, while the random domains are in turn more balanced than the real-
world domains. Furthermore, we can make the same observations from Table 6, which
uses sSW instead of sN .

These numbers suggest that both the hypothesized effects may actually be playing
a role. Furthermore, it is striking to see that even the real-world domains still seem
to display a relatively large degree of balancedness (at least when using sN as its

8This data set can be downloaded from https://www.iiia.csic.es/∼davedejonge/downloads. Each instance
in this data set has two versions. We used the versions that only contained individually rational deals.
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measure), which again suggests that a there may be some natural mathematical reason
for this type of symmetry.

8.4 Negotiations with Discount Factors

As mentioned earlier, we did not take the presence of discount factors into account in
our analysis. In theory, if there are discount factors, there could be strategies that are
better than MiCRO. For example, two agents that immediately propose and accept an
optimal solution would be better. However, we do not see how such a strategy could
be implemented without knowledge of the opponent’s utility function.

Furthermore, while we do not have any theoretical guarantees about the optimality
of MiCRO in negotiations with discount factors, we know from experiments that two
MiCRO agents typically come to a deal much faster than any other pair of agents [1].
This is because MiCRO does not have to do any calculations to update any opponent
models. Therefore, in practice, the presence of discount factors only seems to increase
the advantage of MiCRO over other strategies.

9 Inconsistent Strategies

In the previous sections we have always assumed that the opponents are (semi-
)consistent. In general, this seems like a reasonable assumption. However, it is possible
that an opponent could behave inconsistently on purpose because it would allow them
to exploit MiCRO. We will here give an example of such a strategy, which we call
Anti-MiCRO. However, it should be noted that in order to implement this strategy
deliberately, the opponent would need to know MiCRO’s utility function. Further-
more, we will show that we only need to make a minor adaptation to MiCRO to defend
it against Anti-MiCRO.

9.1 The Anti-MiCRO Strategy

Suppose that α1 applies MiCRO, and that the domain has K offers, which all have a
different utility value for agent α1. That is, we have:

u1(ω1) > u1(ω2) > · · · > u1(ωK)

Then, there exists an inconsistent strategy for α2, which we call Anti-MiCRO, that,
for any offer ω ∈ Ω \ {ωK}, can force MiCRO to propose ω. It works as follows. If α2

has to make the first proposal of the negotiation, then it will propose ω2. Otherwise,
whenever α1 proposes some offer ωj , then α2 will reply by proposing ωj+2, unless α1

proposes the desired offer ω, in which case α2 will accept it.
An example of a negotiation between MiCRO and Anti-MiCRO is displayed in

Table 7, in which Anti-MiCRO wants to force MiCRO to propose ω5.
We can see that this strategy works, because when Anti-MiCRO plays against

MiCRO, it will never repeat any proposals, and therefore MiCRO will also keep making
new proposals. Furthermore, MiCRO will never accept any of α2’s proposals, because
when α2 proposes ωj , agent α1 will have made in total j − 2 different proposals, and
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t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
MiCRO ω1 ω2 ω3 ω4 ω5

Anti-MiCRO ω3 ω4 ω5 ω6 accept: ω5

Table 7: MiCRO vs. Anti-MiCRO. Note that at t = 6, Anti-MiCRO makes an inconsis-
tent rejection, because it rejects ω3 while Anti-MiCRO itself already proposed ω3 earlier.

therefore MiCRO will only be willing to propose or accept ωj−1, at best. This means
that MiCRO keeps conceding, and therefore will eventually propose the offer desired
by α2.

It is easy to see that Anti-MiCRO is inconsistent, because for any offer ωj , if α2

proposes it, then MiCRO will re-propose it three turns later, but then α2 will reject
it (unless it is the desired offer), which is an inconsistent rejection. In fact, it is a
detectable inconsistent rejection, which we will define below.

However, there are three problems with Anti-MiCRO that make it unsuitable in
practice:
1. It requires α2 to know the exact preference ordering of α1.
2. It is an extremely risky strategy, because some the offers proposed by α2 may

actually be very bad for α2. So, if α1 is actually not applying MiCRO, but instead
some other strategy, then it could happen that α1 unexpectedly accepts one of
those bad proposals.

3. With just a small adaptation, MiCRO can easily defend itself against Anti-
MiCRO, as we will see next.

9.2 Defending against Anti-MiCRO

We now propose three possible ways to adapt MiCRO that allow it to defend
itself against strategies like Anti-MiCRO. The idea behind each of them, is to take
repercussions once it detects the opponent makes an inconsistent rejection.
Definition 21. We say an agent makes a detectable inconsistent rejection, if it first
proposes some offer ω, and then later rejects that same offer.

Note that this definition is indeed a special case of an inconsistent rejection (See
Def. 13) with ω = ω′. It is called detectable because in this case our agent can see that
the opponent’s rejection is inconsistent, even without knowing the opponent’s utility
function. On the other hand, it is impossible for an agent to know that its opponent is
making any other kind of inconsistent action without knowing its utility function. For
this reason, our adaptations to MiCRO only involve detectable inconsistent rejections.
Luckily, this is enough to defend against Anti-MiCRO.

It should be noted that all the previously stated lemmas and theorems about
MiCRO that assume the opponent is (semi-)consistent, continue to hold for the adap-
tations of MiCRO that we propose here. This is because all of these adaptations behave
exactly the same as the original MiCRO when the opponent is (semi-)consistent.
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9.2.1 MiCRO-Retire

The simplest adaptation is the following: whenever the opponent makes a detectable
inconsistent rejection, immediately break off the negotiations. We call this MiCRO-
Retire (RETreat after Inconsistent REjection). While this approach is rather harsh,
it allows us to easily prove an even stronger version of Theorems 3 and 4.
Theorem 5. Suppose the same conditions as Theorem 3. Then, among all negotia-
tion strategies that never make inconsistent proposals and never make undectectable
inconsistent rejections, MiCRO-Retire is a best response against itself.

Proof. If α1 and α2 both apply MiCRO-Retire then the outcome would be the same
as when they both applied MiCRO. Now, suppose α2 deviates to some other strategy
σ that never makes inconsistent proposals or undetectable inconsistent rejections. If
σ also does not make any detectable inconsistent rejections, then σ is in fact semi-
consistent and MiCRO-Retire will behave exactly like MiCRO. Therefore, we know
by Theorem 4 that σ cannot be a better response. On the other hand, if, at some
point, σ does make a detectable inconsistent rejection, then α1 will withdraw and the
negotiations will fail, so α2 will be worse off than if it had chosen MiCRO-Retire. So,
again, σ would not be a better response.

9.2.2 MiCRO-Repair and MiCRO-Inspire

Withdrawing from the negotiations immediately after an inconsistent rejection may be
an overly harsh reaction, since some opponents might make inconsistent rejections by
accident (e.g. because of bugs in the code, or merely by suboptimal implementation),
or on purpose, but for reasons that have nothing to do with exploiting MiCRO. We
therefore also propose two more forgiving adaptations.

The first option is called MiCRO-Repair (REpeat old Proposals After Inconsistent
Rejection). Whenever it detects an inconsistent rejection by the opponent, it does
continue negotiating, but it will not propose any new offers anymore. It will just keep
repeating (random) proposals it already made before, until the end of the negotiations.

The second option is even more forgiving. We call it MiCRO-Inspire (Ignore iNSin-
cere Proposals that were Inconsistently REjected). Define the numbers m and n as in
Section 3.4. Furthermore, define l as the number of unique offers that were proposed
by the opponent, but then later rejected by that opponent. Then, we obtain MiCRO-
Inspire by replacing every occurrence of n in Algorithm 1, by n − l. That is, in any
turn, MiCRO-Inspire will propose a new offer only if m ≤ n− l. Otherwise it will just
repeat an earlier proposal. The idea behind this, is that if the opponent first proposes
a given offer, but later rejects it, then it was not a genuine proposal, and therefore it
should not be counted.

We suspect that Theorem 5 still holds if we use MiCRO-Repair or MiCRO-Inspire
instead of MiCRO-Retire. We will not attempt to prove this, however.

10 Conclusions and Future Work

We have defined the notion of a consistent negotiation strategy, and have shown that
the MiCRO negotiation strategy forms a best response against itself among consistent
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negotiation strategies. Furthermore, we have defined the notion of a balanced negoti-
ation domain, and we have shown that the MiCRO strategy is a game-theoretically
optimal strategy on such domains. By itself, this is not surprising, because the notion of
a balanced domain was defined exactly with that purpose. However, what is surprising,
is that in practice many of the ANAC domains turn out to be balanced.

Although it is not entirely clear why so many of these domains are balanced, we
have provided evidence that suggests this may be caused by two different effects.
Firstly, it may be partially due to the fact that they were designed by people, who
apparently have a (possibly subconscious) preference for domains that exhibit some
degree of symmetry. And secondly, it may also partially be the natural consequence of
some yet unknown mathematical mechanism. Anyway, we think that understanding
the concept of a balanced negotiation domain will help researchers to design more
challenging negotiation test cases in the future.

In summary, we draw the following main conclusions:
1. Under the conditions of ANAC, MiCRO is a best response against itself among

all consistent strategies.
2. Many domains used in ANAC are approximately balanced, meaning that, among

all consistent strategies, MiCRO is game-theoretically optimal on such domains.
3. While there are inconsistent strategies that are able to exploit MiCRO, as far as

we can tell such strategies always need very precise knowledge of their opponent’s
utility function, and be absolutely sure that their opponent is applying MiCRO.

One important open question is to what extent realistic negotiation strategies are
indeed consistent. While we argued that without knowledge of opponent utility, they
should indeed be consistent, we know that in reality agents may use opponent modeling
algorithms to obtain such knowledge. If such algorithms are good enough they could
be used to implement agents that are inconsistent on purpose, so as to exploit MiCRO.
We therefore think that MiCRO can be very useful as a tool to assess the quality of
such opponent modeling algorithms. Specifically, it can be used to answer the following
questions:

� Are opponent modeling algorithms strong enough to successfully implement Anti-
MiCRO (or some other inconsistent strategy that exploits MiCRO)?

� If yes, can MiCRO itself also make use of such opponent modeling algorithms to
defend itself against such opponents (e.g. by detecting inconsistent proposals or
rejections from the opponent and then taking repercussions)?

� If a learning algorithm negotiates against MiCRO, on a balanced domain, will it
learn to behave like MiCRO?

� If two learning algorithms negotiate against each other on a balanced domain,
will they learn to behave like MiCRO?

Furthermore, we are planning to develop generalizations of MiCRO for multilateral
negotiations, for negotiations over larger domains in which there is not enough time
to propose all offers one by one (e.g. domains with more than a million offers), and
for negotiations over extremely large domains in which there is not even enough time
to sort the offers in a list (e.g. domains with 1020 offers).
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Appendix A Proof that MiCRO is consistent

We here provide the proof that MiCRO is consistent. That is, we will prove that that it
never makes inconsistent rejections, acceptances, or proposals. We prove each of these
separately. In all cases we will suppose that it is agent α1 that applies the MiCRO
strategy.
Lemma 6. MiCRO never makes inconsistent rejections.

Proof. Suppose there exist ω, ω′ ∈ Ω such that the second and third condition of
Def. 13 hold. We will show that the first condition then cannot hold. Let ωlow denote
the offer with lowest utility that α1 is willing to propose at time t, as defined by Eq.
(1). Now, since the third condition says that at some time t′ before t agent α1 has
proposed ω′, we know that, by definition of MiCRO, we must have u1(ω

′) ≥ u1(ωlow).
But, according to the second condition, we have u1(ω) ≥ u1(ω

′), and therefore we also
have u1(ω) ≥ u1(ωlow). As explained in Section 3.4, this means that α1 will accept ω,
instead of rejecting it. So indeed, the first condition fails to hold.

Lemma 7. MiCRO never makes inconsistent acceptances.

Proof. We assume that all four conditions of Def. 12 hold, and show that this leads
to a contradiction. Note that the third condition implies that ω′ appears on MiCRO’s
sorted list before ω, and therefore MiCRO must have proposed ω′ before accepting ω,
at some time t′′. So, we have (i, p, ω′, t′′) ∈ s, with t′′ < t. Furthermore, the first two
conditions say we have (i, a, ω, t) ∈ s and (3 − i, p, ω′, t′) ∈ s, with t′ < t. There are
now two possibilities: either t′ < t′′ or t′′ < t′. In the first case, the fourth condition of
Def. 12 is violated, so we must have t′′ < t′. However, that would mean that MiCRO
would accept ω′ directly after t′, so the negotiations would end with ω′ as the accepted
offer, violating the first condition.

Lemma 8. MiCRO never makes inconsistent proposals.
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Proof. Suppose the contrary. That is, suppose that at some time t agent α1 proposes
ω, while ω′ has strict priority over ω for α1.

This means that the opponent has already proposed ω′ at some earlier time t′

before t.
We will first show that MiCRO must have also proposed ω′ at some time before t.

To do this, we will consider two separate cases, namely u1(ω
′) > ui(ω), and u1(ω

′) =
ui(ω) (the case that u1(ω

′) < ui(ω) is not possible because we assumed that ω′ had
strict priority over ω).

In the case that u1(ω
′) > ui(ω) the fact that α1 would have proposed ω′ before

proposing ω follows immediately from the definition of MiCRO.
In the case that u1(ω

′) = ui(ω), it follows from Conditions 5 and 7 of Def. 10 that
the opponent must have already proposed ω′, while it has not yet proposed ω. When
that happens, MiCRO makes sure that ω′ comes before ω on its list (see Algorithm 1,
lines 13–22), so in that case α1 would also propose ω′ before ω.

Now that we have established that there is some time t′′ at which α1 proposed ω′,
we see from Conditions 3 and 6 of Def. 10 that this cannot have happened after time t′.

So, we know that α1 first proposed ω′ and then at a later time t′ the opponent
α2 re-proposed it. But then, by definition of MiCRO, α1 would have accepted that
α2’s proposal at time t′, so the negotiations would have finished before time t. This
contradicts our assumption.

Appendix B More Properties of the Balance Set

In this appendix we discuss a number of properties of the balance set. These are
not directly relevant to the rest of the paper, but they may help to get a better
understanding of the concept.

We have already seen that when two MiCRO agents negotiate with each other,
the outcome will be an element of the balance set. We here show, however, that we
cannot say more than that, because the balance set may contain multiple offers and
the question which of those the agents will agree upon depends on the details of the
negotiation protocol and on the way the agents break ties whenever they are indifferent
between offers.

We will use the notation ω ∼ (40, 60) to indicate that for offer ω agent α1 a utility
value of 40, while agent α2 receives a utility value of 60, i.e. u1(ω) = 40 and u2(ω) = 60.
Observation 1. The balance set of a negotiation domain may contain more than one
element.

We can demonstrate this observation with the following example:

ω1 ∼ (100, 25), ω2 ∼ (75, 50), ω3 ∼ (50, 75), ω4 ∼ (25, 100)

Then we have:

Ωx1
1 = {ω1} and Ωy1

2 = {ω4}, so: Ωx1
1 ∩ Ωy1

2 = ∅
Ωx2

1 = {ω1, ω2} and Ωy2

2 = {ω3, ω4}, so: Ωx2
1 ∩ Ωy2

2 = ∅
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Ωx3
1 = {ω1, ω2, ω3} and Ωy3

2 = {ω2, ω3, ω4}, so: Ωx3
1 ∩ Ωy3

2 = {ω2, ω3}

So, indeed, we see that Ωx3
1 ∩Ω

y3

2 is the balance set and it has more than one element.
Observation 2. If a balance set has more than one element, then the outcome of a
negotiation between two agents applying MiCRO may depend on which agent makes
the first proposal.

Look again at the example of Observation 1. If agent α1 starts, then they agree on
offer ω3, while if agent α2 starts, then the agreement will be ω2.
Observation 3. If there is at least one agent that is indifferent between at least two
offers, then the balance set may contain more than two elements.

Consider a domain with the following offers (note that α2 is now indifferent between
ω1 and ω2):

ω1 ∼ (100, 25), ω2 ∼ (75, 25), ω3 ∼ (50, 75), ω4 ∼ (25, 100)

Then we have:

Ωx1
1 = {ω1} and Ωy1

2 = {ω4}, so: Ωx1
1 ∩ Ωy1

2 = ∅
Ωx2

1 = {ω1, ω2} and Ωy2

2 = {ω3, ω4}, so: Ωx2
1 ∩ Ωy2

2 = ∅
Ωx3

1 = {ω1, ω2, ω3} and Ωy3

2 = {ω1, ω2, ω3, ω4}, so: Ωx3
1 ∩ Ωy3

2 = {ω1, ω2, ω3}

So, again, Ωx3
1 ∩ Ωy3

2 is the balance set, but this time it has three elements.
Under the AOP, the outcome of a negotiation between two MiCRO agents is deter-

mined by who makes the first proposal. This means there are only two elements of the
balance set that can actually be the outcome. However, if we allow a small adaptation
to the AOP in which agents can accept any previously proposed offer (instead of only
the last one), then the agents may also agree on other elements of the balance set.
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